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We don’t quite understand ourselves
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Yao et al. Nature 2023
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Fig. 1 | Transcriptomic cell-type taxonomy of the whole mouse brain. a, Left, 
the transcriptomic taxonomy tree of 338 subclasses organized in a dendrogram 
(10xv2: n = 1,699,939 cells; 10xv3: n = 2,341,350 cells; 10x Multiome: n = 1,687 
nuclei). The neighbourhood and class levels are marked on the taxonomy tree. 
Classes marked with asterisks are included in the NN–IMN-GC neighbourhood. 
The IDs of every third subclass are shown to the right of the dendrogram.  
Full subclass names are provided in Supplementary Table 7. Following subclass 
IDs, bar plots represent (left to right): major neurotransmitter type, region 
distribution of profiled cells, number of clusters per subclass, number of 
RNA-seq cells analysed per subclass, and number of cells analysed by MERFISH 
per subclass. Subclasses marked with grey dots contain sex-dominant clusters. 
Sex-dominant clusters within a subclass are identified by calculating the odds 
and log P value for male/female distribution per cluster. Clusters with odds < 0.2 
and log10(P value) < −10 are considered to be sex-dominant. b–e, UMAP 
representation of all cell types coloured by class (b), subclass (c), brain region 
(d) and major neurotransmitter type (e). Colour schemes for a–e are shown in 

the key at the bottom right of the figure. Astro, astrocyte; CB, cerebellum;  
CGE, caudal ganglionic eminence; CNU, cerebral nuclei; CR, Cajal–Retzius;  
CT, corticothalamic; CTX, cerebral cortex; CTXsp, cortical subplate; DG, dentate 
gyrus; EA, extended amygdala; Epen, ependymal; EPI, epithalamus;  
ET, extratelencephalic; GC, granule cell; HB, hindbrain; HPF, hippocampal 
formation; HY, hypothalamus; HYa, anterior hypothalamic; IMN, immature 
neurons; IT, intratelencephalic; L6b, layer 6b; LGE, lateral ganglionic eminence; 
LH, lateral habenula; LSX, lateral septal complex; MB, midbrain; MGE, medial 
ganglionic eminence; MH, medial habenula; MM, medial mammillary nucleus; 
MY, medulla; NN, non-neuronal; NP, near-projecting; OB, olfactory bulb;  
OEC, olfactory ensheathing cells; OLF, olfactory areas; Oligo, oligodendrocytes; 
OPC, oligodendrocyte precursor cells; P, pons; PAL, pallidum; STR, striatum; 
TH, thalamus. Neurotransmitter types: Chol, cholinergic; Dopa, dopaminergic; 
GABA, GABAergic; Glut, glutamatergic; Glyc, glycinergic; Hist, histaminergic; 
Nora, noradrenergic; Sero, serotonergic; NA, not applicable (no neurotransmitter 
detected).



Decoding the “language” of genomes, cells, and tissues
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sequence   —   structure   —   function

Single cell

Spatial coordinates
of tissue

Multiscale Spatial Omics

...

Nucleus
Enhancers Promoters

Genes

Language of 
protein sorting

Language of genome regulatory code 
that enables signaling responses

Cellular foundation model

Biology is multiscale. So must our models be.



Building an organism
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Subsets of the DNA sequence 
determine the identity and function 
of different cells

cell
DNA Every cell has the same sequence of DNA



Central dogma
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Protein

mRNA

DNA

transcription

translation

CCTGAGCCAACTATTGATGAA

PEPTIDE

CCUGAGCCAACUAUUGAUGAA

? Proteins do most of the work in biology, 
and are encoded by subsequences of 
DNA, known as genes. 



The human genome: the “blueprint” of our body

6

1013 different cells in an 
adult human 

The cell is the basic unit of 
life 

DNA = linear molecule 
inside the cell that carries 
instructions needed 
throughout the cell’s life ~ 
long string(s) over a small 
alphabet 

Alphabet of four 
(nucleotides/bases) 
{A,C,G,T}

February 15, 2001  

GTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGA
TTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCC
CCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATT
AGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCT
ATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAAC
ATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATT



DNA, Chromosome, and Genome
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" beads-on-a-str ing "
form of  chromat in

30-nm chromat in
f iber of  packed
nucleosomes

Figure 4-72 Chromatin packing. This
model shows some of the many levels of
chromatin packing postulated to give r ise
to the highly condensed mitot ic
chromosome.
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NET RESULT: EACH DNA MOLECULE HAS BEEN
PACKAGED INTO A MITOTIC CHROMOSOME THAT

IS 1O,OOO-FOLD SHORTER THAN ITS EXTENDED LENGTH

Figure 4-73 The SMC proteins in condensins. (A) Electron micrographs of
a puri f ied SMC dimer. (B) The structure of a SMC dimer. The long central
region of this protein is an antiparal lel  coi led-coi l  (see Figure 3-9) with a
f lexible hinge in i ts middle. (C) A model for the way in which the SMC
proteins in condensins might compact chromatin. In real i ty, SMC proteins
are components of a much larger condensin complex. l t  has been
proposed that, in the cel l ,  condensins coi l  long str ings of looped chromatin
domains (see Figure 4-57). ln this wa, the condensins could form a
structural framework that maintains the DNA in a highly organized state
during metaphase of the cel l  cycle. (A, courtesy of H.P. Erickson; B and C,
adapted from T. Hirano, Not. Rev. Mol. Cell Biol.7:311-322,2006. With
permission from Macmil lan Publishers Ltd.)

ret

DNA double hel ix

5' Y
3'

hydrogen-bonded
base pairs

4-4). This complementary base-pairlng enables the base pairs to be packed in
the energetically most favorable arrangement in the interior of the double helix.
In this arrangement, each base pair is of similar width, thus holding the sugar-
phosphate backbones an equal distance apart along the DNA molecule. To max-
imize the efficiency of base-pair packing, the two sugar-phosphate backbones
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bui ld ing blocks of  DNA
phosphate

\  suqa r' ;  +K-
sugar oase

phosphate
n e

double-stranded DNA

llilii:i:ilitffi $$iiiffi liiiii:ii:iii Figure 4-3 DNA and its building blocks.
<CAGA> DNA is made of four types of
nucleotides, which are linked covalently
into a polynucleotide chain (a DNA
strand) with a sugar-phosphate
backbone from which the bases (A, C, G,
and T) extend. A DNA molecule is
composed of two DNA strands held
together by hydrogen bonds between
the paired bases.The arrowheads atthe
ends ofthe DNA strands indicate the
polarities of the two strands, which run
antiparal lel  to each other in the DNA
molecule. In the diagram at the bottom
left of the figure, the DNA molecule is
shown straightened out; in reality, it is
twisted into a double hel ix, as shown on
the r ight. For detai ls, see Figure 4-5.

Figure 4-4 Complementary base pairs in
the DNA double hel ix. The shapes and
chemical structure of the bases allow
hydrogen bonds to form efficiently only
between A and T and between G and C.
where atoms that are able to form hydrogen
bonds (see Panel 2-3, pp. 1 10-1 1 1) can be
brought close together without distorting
the double hel ix. As indicated, two
hydrogen bonds form between A and T,
while three form between G and C.The
bases can pair in this way only i f  the two
polynucleotide chains that contain them
are antiparal lel  to each other.
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CHROMOSOMAL DNA AND ITS PACKAGING IN THE CHROMATIN FIBER

(A) (B)  - r^

along each mitotic chromosome (Figure 4-f l). The structural bases for these
banding patterns are not well understood. Nevertheless, the pattern of bands on
each type of chromosome is unique, and it is these patterns that initially allowed
each human chromosome to be identified and numbered.

The display of the 46 human chromosomes at mitosis is called the human
karyotype. If parts of chromosomes are lost or are switched between chromo-
somes, these changes can be detected by changes in the banding patterns or by
changes in the pattern of chromosome painting (Figure 4-12). Cytogeneticists
use these alterations to detect chromosome abnormalities that are associated
with inherited defects, as well as to characterize cancers that are associated with
specific chromosome rearrangements in somatic cells (discussed in Chapter 20).

203

Figure 4-10 The complete set of human
chromosomes. These chromosomes, from
a male, were isolated from a cel l
undergoing nuclear division (mitosis) and
are therefore highly compacted. Each
chromosome has been "painted" a
dif ferent color to permit i ts unambiguous
identi f icat ion under the l ight microscope.
Chromosome paint ing is performed by
exposing the chromosomes to a col lect ion
of human DNA molecules that have been
coupled to a combination of f luorescent
dyes. For example, DNA molecules derived
from chromosome 1 are labeled with one
specific dye combination, those from
chromosome 2 with another, and so on.
Because the labeled DNA can form base
pairs, or hybridize, only to the
chromosome from which it was derived
(discussed in Chapter 8), each
chromosome is dif ferently labeled. For
such experiments, the chromosomes are
subjected to treatments that separate the
double-hel ical DNA into individual strands,
designed to permit base-pair ing with the
single-stranded labeled DNA while
keeping the chromosome structure
relat ively intact. (A) The chromosomes
visual ized as they original ly spi l led from
the lysed cel l .  (B) The same chromosomes
art i f ic ial ly l ined up in their numerical order.
This arrangement of the ful l  chromosome
set is cal led a karyotype. (From E. Schrock
et al.. Science 273:494-497,1996. With
permission from AAAS.)

Figure 4-1 1 The banding patterns of
human chromosomes. Chromosomes
1-22 are numbered in approximate order
of size. A typical human somatic (non-
germ-l ine) cel l  contains two of each of
these chromosomes, plus two sex
chromosomes-two X chromosomes in a
female, one X and one Y chromosome in a
male. The chromosomes used to make
these maps were stained at an early stage
in mitosis, when the chromosomes are
incompletely compacted. Th e horizontol
red line represents the position of the
centromere (see Figure 4-21), which
appears as a constriction on mitotic
chromosomes. The red knobs on
chromosomes 13, ' l4 ,  15 ,21  ,and22
indicate the posit ions of genes that code
for the large r ibosomal RNAs (discussed in
Chapter 6). These patterns are obtained by
staining chromosomes with Giemsa stain,
and they can be observed under the l ight
microscope. (For micrographs, see Figure
21 -1 8; adapted from U. Franke , Cytogenet.
Cell  Genet.31:24-32, 1981. With

5
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Genome
 A genome is an organism’s complete set of DNA (including its genes) 

 In humans, less than 2% of the genome actually encodes for genes. 

 However, a much larger percentage of the genome is transcribed (miRNAs, lncRNAs, and 
other non-coding RNAs…) 

 … and a large fractions of the rest of the genome serves as a control regions, i.e., these 
regions are involved in determining when genes are turned on and off depending on the 
context

8



What is a gene?

9



Structure of genes in mammalian cells
 Within coding DNA genes there can be un-

translated regions (Introns)  

 The translated parts are termed Exons. 
These are the segments of DNA that 
contain the protein coding information 

 Following transcription Introns are 
removed and Exons are spliced to make 
the protein 

 Alternative splicing increases the 
potential number of different proteins, 
allowing the generation of millions of 
proteins from a small number of genes

10



Genes encode for proteins
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High-throughput sequencing

 High-throughput DNA sequencing — One of the most disruptive technologies in the past 
decade

12



Interpret the genetic code 
i.e. How the Human Genome works?
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GTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATG
AAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATT
AGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTG
CATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATT 
GTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATG
AAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATT
AGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTG
CATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATT 
GTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATG
AAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATT
AGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTG
CATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATT 
GTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATG
AAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATT
AGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTG
CATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATT 
GTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATG
AAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATT
AGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTG
CATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATT 
GTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATG
AAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATT
AGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTG
CATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATT 
GTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATG
AAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATT



Understanding the genome
 View from 2000 
• Protein-coding genes      35,000 - 120,000 
• Regulatory sequence      Less than protein-coding information 
• Transposons                   Junk DNA 

 We now know ...

14

All these are 
WRONG!



How many genes do we have?
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fly 
worm 

human 
weed 

fish 
rice

What we used to think

Gene numbers do not correlate with organism complexity.  
Many gene families are surprisingly old.



Main components in the human genome
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Barbara McClintock

Only 1.5% of the human genome are protein-coding regions 
Transposable elements make up almost half of the human genome



Most functional information is non-coding
 5% highly conserved, but only 1.5% encodes proteins
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Genscan (Burge and Karlin, 1998)
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The spectrum of genetic variation
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ANRV285-GG07-17 ARI 3 August 2006 8:58

Table 1 The spectrum of variation in the human genome

Variation Rearrangement type Size rangea References
Single base-pair changes Single nucleotide polymorphisms, point

mutations
1 bp (3)

Small insertions/deletions Binary insertion/deletion events of short
sequences (majority <10 bp in size)

1–50 bp (18, 143)

Short tandem repeats Microsatellites and other simple repeats 1–500 bp (39)
Fine-scale structural variation Deletions, duplications, tandem repeats,

inversions
50 bp to 5 kb (34, 54, 87)

Retroelement insertions SINEs, LINEs, LTRs, ERVsb 300 bp to 10 kb (17)
Intermediate-scale structural
variation

Deletions, duplications, tandem repeats,
inversions

5 kb to 50 kb (34, 54, 87, 136)

Large-scale structural variation Deletions, duplications, large tandem repeats,
inversions

50 kb to 5 Mb (34, 35, 54, 57, 87,
123, 124, 136)

Chromosomal variation Euchromatic variants, large cytogenetically
visible deletions, duplications, translocations,
inversions, and aneuploidy

∼5 Mb to entire
chromosomes

(61, 62)

aSize ranges quoted are indicative only of the scale of each type of rearrangement, and are not definitive.
bSINE, short interspersed element; LINE, long interspersed element; LTR, long terminal repeat; ERV, endogenous repeat virus.

architecture of the genome, which acts as a
catalyst for chromosomal instability. Indeed,
detailed analyses of many sites of structural
variation often show an intimate association
between the location of segmental duplica-
tions and sites of polymorphic rearrangement
(124, 136; A. Sharp & E. Eichler, unpublished
data), suggesting that segmental duplications
frequently mediate polymorphic rearrange-
ment of intervening sequences via NAHR,
and in addition they are often variable in copy
number (48, 124).

TYPES OF STRUCTURAL
VARIATION IN THE HUMAN
GENOME

Insertions and Deletions

Insertion and deletion events represent the
most frequent type of structural variation in
the human genome (136), and also the best
characterized (Figure 2). Some of the ear-
liest mapped human genetic traits, such as
color blindness and the Rhesus factor, were
shown to result from this type of rearrange-
ment more than 50 years after their initial

discovery (36, 141). According to the Human
Genome Mutation database, 5% of all mu-
tations associated with simple Mendelian ge-
netic diseases are currently attributed to sub-
microscopic insertion or deletions (7). Inser-
tion/deletion polymorphisms of several genes
with functions in metabolism influence a va-
riety of common phenotypes. A number of
drug detoxification enzymes show this type
of polymorphism, with some being homozy-
gously deleted in as many as 30% of individu-
als of certain ethnicity. Copy number changes
of cytochrome P450 drug-metabolizing en-
zymes, such as CYP2D6, are associated with
variability in metabolism of tricyclic antide-
pressants and antipsychotic drugs (24), and
are also risk factors for laryngyal and lung can-
cers (1), whereas homozygous deletions of the
glutathione S-transferase genes (GSTT1 and
GSTM1) are associated with altered risk for a
variety of cancers (49, 97).

As insertions/deletions essentially repre-
sent the gain or loss of genetic material, a va-
riety of different techniques have been devel-
oped to screen for these events based on the
associated change in DNA copy number. To
date, eight independent genome-wide studies
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The direction of the PC1 axis and its relative strength may reflect a

special role for this geographic axis in the demographic history of

Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/

south-southeast (NNW/SSE, 216 degrees) and accounts for

approximately twice the amount of variation as PC2 (0.30% versus

0.15%, first eigenvalue5 4.09, second eigenvalue5 2.04). However,

caution is required because the direction and relative strength of the

PC axes are affected by factors such as the spatial distribution of

samples (results not shown, also see ref. 9). More robust evidence

for the importance of a roughly NNW/SSE axis in Europe is that, in

these same data, haplotype diversity decreases from south to north

(A.A. et al., submitted). As the fine-scale spatial structure evident in

Fig. 1 suggests, European DNA samples can be very informative

about the geographical origins of their donors. Using a multi-

ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within

700 km of their origin (Fig. 2 and Supplementary Table 4, results

based on populations with n. 6). Across all populations, 50% of

individuals are placed within 540 km of their reported origin, and

90% of individuals within 840 km (Supplementary Fig. 3 and

Supplementary Table 4). These numbers exclude individuals who

reported mixed grandparental ancestry, who are typically assigned

to locations between those expected from their grandparental origins

(results not shown). Note that distances of assignments from

reported origin may be reduced if finer-scale information on origin

were available for each individual.

Population structure poses awell-recognized challenge for disease-

association studies (for example, refs 11–13). The results obtained

here reinforce that the geographic distribution of a sample is impor-

tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of

genetic data from 1,387 Europeans based on principal component axis one

(PC1) and axis two (PC2). Small coloured labels represent individuals and

large coloured points represent median PC1 and PC2 values for each

country. The inset map provides a key to the labels. The PC axes are rotated

to emphasize the similarity to the geographic map of Europe. AL, Albania;

AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,

Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;

ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,

Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,

Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,

Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,

Yugoslavia. b, A magnification of the area around Switzerland from

a showing differentiation within Switzerland by language. c, Genetic

similarity versus geographic distance. Median genetic correlation between

pairs of individuals as a function of geographic distance between their

respective populations.
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The direction of the PC1 axis and its relative strength may reflect a
special role for this geographic axis in the demographic history of
Europeans (as first suggested in ref. 10). PC1 aligns north-northwest/
south-southeast (NNW/SSE, 216 degrees) and accounts for
approximately twice the amount of variation as PC2 (0.30% versus
0.15%, first eigenvalue5 4.09, second eigenvalue5 2.04). However,
caution is required because the direction and relative strength of the
PC axes are affected by factors such as the spatial distribution of
samples (results not shown, also see ref. 9). More robust evidence
for the importance of a roughly NNW/SSE axis in Europe is that, in
these same data, haplotype diversity decreases from south to north
(A.A. et al., submitted). As the fine-scale spatial structure evident in
Fig. 1 suggests, European DNA samples can be very informative
about the geographical origins of their donors. Using a multi-
ple-regression-based assignment approach, one can place 50% of

individuals within 310 km of their reported origin and 90% within
700 km of their origin (Fig. 2 and Supplementary Table 4, results
based on populations with n. 6). Across all populations, 50% of
individuals are placed within 540 km of their reported origin, and
90% of individuals within 840 km (Supplementary Fig. 3 and
Supplementary Table 4). These numbers exclude individuals who
reported mixed grandparental ancestry, who are typically assigned
to locations between those expected from their grandparental origins
(results not shown). Note that distances of assignments from
reported origin may be reduced if finer-scale information on origin
were available for each individual.

Population structure poses awell-recognized challenge for disease-
association studies (for example, refs 11–13). The results obtained
here reinforce that the geographic distribution of a sample is impor-
tant to consider when evaluating genome-wide association studies
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Figure 1 | Population structure within Europe. a, A statistical summary of
genetic data from 1,387 Europeans based on principal component axis one
(PC1) and axis two (PC2). Small coloured labels represent individuals and
large coloured points represent median PC1 and PC2 values for each
country. The inset map provides a key to the labels. The PC axes are rotated
to emphasize the similarity to the geographic map of Europe. AL, Albania;
AT, Austria; BA, Bosnia-Herzegovina; BE, Belgium; BG, Bulgaria; CH,
Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark;
ES, Spain; FI, Finland; FR, France; GB, United Kingdom; GR, Greece; HR,

Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK,
Macedonia; NO, Norway; NL, Netherlands; PL, Poland; PT, Portugal; RO,
Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE,
Sweden; SI, Slovenia; SK, Slovakia; TR, Turkey; UA, Ukraine; YG,
Yugoslavia. b, A magnification of the area around Switzerland from
a showing differentiation within Switzerland by language. c, Genetic
similarity versus geographic distance. Median genetic correlation between
pairs of individuals as a function of geographic distance between their
respective populations.
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Transcriptional regulation

 Transcription start site (TSS) 
 Transcription factor binding sites (TFBS) 
 Cis-regulatory module (CRM) 
 Proximal promoter and distal enhancer

23
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Figure 1 | Regulation of transcription. a | A summary of promoter elements and regulatory signals. Chromatin is 
comprised of DNA wrapped around histones to form nucleosomes. The structure of chromatin can be tightly 
wrapped or accessible to proteins. Boundaries between these states may be marked by insulators. The region around 
the transcription start site (TSS) is often divided into a larger proximal promoter upstream of the TSS and a smaller 
core promoter just around the TSS. The exact boundaries vary between studies. To recruit RNA polymerase II 
(RNAPII) and to activate transcription of the gene, sequence-specific regulatory proteins (transcription factors) bind 
to specific sequence patterns (namely, transcription factor binding sites (TFBSs)) that are near to the TSS (proximal 
elements) or that are far away from it (enhancers). TFBSs can also occur in clusters, forming cis-regulatory modules 
(CRMs). b | Sequence patterns in core promoters. The region around the TSS has several over-represented sequence 
patterns; the TATA box and initiator (Inr) are the most studied and most prevalent. The location of patterns relative 
to the TSS and their sequence properties are shown as boxes and as associated sequence logos based on the JASPAR 
database. The Inr pattern is not shown as it varies considerably between studies, ranging from a TCA(G/T)TC(C/T) to 
a single dinucleotide (pyrimidine (C/T)–purine (A/G)). Importantly, most promoters only have one or a few of these 
patterns, and some patterns are mostly found in certain species. BRE, B recognition element; DCE, downstream core 
element; DRE, DNA recognition element; MTE, motif ten element. Figure modified, with permission, from REF. 91 © 
(2004) Macmillan Publishers Ltd. All rights reserved.

Pre-initiation complex
(PIC). A polypeptide complex 
consisting of RNA polymerase 
II and general transcription 
factors. This forms in the core 
promoter region around the 
transcription start site and 
primes RNA polymerase II  
for transcription.

B recognition element 
(BRE). A core promoter 
element with consensus 
sequence SSRCGCC found 
upstream of TATA box.

modifications and their dynamics, nucleosome con-
figuration and association with long-range regulatory 
elements — all show clear equivalence. We then turn 
to other recently discovered properties of promoters 

for which systematic classification and association  
with promoter function has not been settled. These 
include promoter-associated small RNAs and RNAPII 
pausing, stalling and backtracking at the TSS.
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Transcription factors (TFs) in the human genome
 300 TFs bind to core promoter regions 
• General transcription machinery (e.g., RNA polymerase) 
• Required for transcription of most protein-coding genes 

 1500 TFs bind to other regions in the genome 
• Proximal promoter, enhancer, silencer 
• Regulate a subset of genes
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How is specificity of binding achieved?
 Consensus motif 
• Commonly found sequence 
• Shows which nucleotide is most abundant at each position, represented as a 

Position Weight Matrix (PWM) 
• E.g., GATA1 binding motif: [AT] G A T A [AG] 

 Motif — A subsequence (substring) that occurs in multiple sequences with 
a biological importance. 

 Motifs can be totally constant or have variable elements. 
 Motifs for regulatory elements 
• Binding sites for proteins 
• Short sequences (5-25) 
• Up to certain range, e.g., 1000 bp (or farther), from gene 
• Inexactly repeating patterns (challenge!)
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A

Present (# of TFBS = 1)
Absent  (# of TFBS = 0)
Branch of Origin

DNA

chr2
SPOPL

SINE
LINE
LTR

hg19 139,290,000 139,295,000 139,300,000

GATA1
ChIP-seq

GATA1
binding motif

Human GAATCTATAGATAACACAAGCAGTTCA
Chimp GAATCTATAGATAACACAAGCAGTTCA
Gorilla ----------------------------------
Orangutan GAATCTATAGATAACACAAGCAGTTCA
Macaque GAATCTATAGCTAACACAAGCACTTCA
Baboon GAATCTATAGCTAACACAAGCACTTCA
Marmoset ---------------------------
Tarsier ---------------------------
Mouse Lemur ---------------------------
Bushbaby ---------------------------
Tree Shrew ---------------------------
Mouse ---------------------------
Rat ---------------------------

chr2:139,295,009-139,295,035
Human-Chimp

Hominines
Hominids

Catarrhines
Simians

Haplorhines
Primates

Human TCCTGGCAAATTTCACATTACTCCC-T--ATCT
Chimp TCCTGGCAAATTTCACATTACTCCC-T--ATCT
Gorilla TCCTGGCAAATTTCACATTACTCCC-T--ATCT
Orangutan TCCTGGCAAATTTCACATTACTCCC-T--ATCT
Macaque TCCTGGCAAATTTCACATTACTCCC-T--ATCT
Baboon TCCTGGCAAATTTCACATTACTCCC-T--ATCT
Marmoset TCCTGGCAAATTTCACATTACTTAC-T--ATCT
Tarsier ---------------------------------
Mouse Lemur TCCTGAAAAATTTCACAGTACTCCCTT--ATCT
Bushbaby ---------------------------------
Tree Shrew TCCTGAAAAATTTCTCATTCCTCCC-TCAACTT
Mouse TCCTTATCAGTTTCA------------------
Rat TCCTTATCAATTTCACGTGGACCCC-AC-ATCT
Guinea Pig TTCCAACGAATTTCATATTACTCCC-TC-GTCT
Squirrel    TCCCACCAAATTTCACATTACTCCC-TC-ATCT

chr15:40,851,773-40,851,802
Human-Chimp

Hominines
Hominids

Catarrhines
Simians

Haplorhines
Primates

B

hg19  chr15 40,850,000 40,855,000
C15orf57

mm9    chr2 118,850,000 118,855,000

GATA1
ChIP-seq

GATA1
ChIP-seq



From one cell to trillions
 Humans have multiple 

types of cells 

 Individual cell types also 
differentiate into  
sub-cell types 
 

 Lots more cell types left 
to discover!
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DNA is only half the story
 Variations in DNA alone may not entirely account for variations in phenotypic traits 
 Organisms with identical DNA often exhibit distinct phenotypes 
• Plants, Insects, Mammals

27

Agouti mouse 
• Agouti gene gets 

methylated 
• Low risk of cancer, 

diabetes, obesity;  
• Prolonged lifespan

Yellow mouse 
• High risk of 

cancer, diabetes, 
obesity;  

• Reduced 
lifespan

DNA is only half the story 
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What is epigenetics/epigenomics?
 A mitotically or meiotically heritable state of different gene activity and expression 

(phenotype) that is independent of differences in DNA sequence (genotype) 
• – based on Conrad Waddington, 1942 

 The sum of the alterations to the chromatin template that collectively establish and 
propagate different patterns of gene expression (transcription) and silencing from the same 
genome. 

 Epigenetic changes influence the phenotype without altering the genotype.  

 While epigenetics often refers to the study of single genes or sets of genes, epigenomics 
refers to more global analyses of epigenetic changes across the entire genome. 
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Epigenetic mechanisms
 DNA methylation 
• Normal cells — role in gene expression and chromosome stability 
• Cancer cells — consequences of aberrant hypo- and hyper-methylation 

 Histone modification 
• Normal cells — the histone code 
• Cancer cells — consequences of altered histone modifying enzymes 

 Interaction between DNA methylation, histone modifications, and other players such as non-
coding RNAs 

 Cell and tissue type specificity 

 Gene-environment interaction, disease susceptibility
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 If DNA is like the alphabet, 
epigenetic marks are like the 
accents and punctuation 

 If DNA is like a book, epigenetic 
marks are like sticky notes  

What do epigenetic marks do?

If DNA is like the alphabet, 
epigenetic marks are like the 
accents and punctuation

TAG   CAT   ACT

DNA sequence

Epigenetic marks

Read
Read

Ignore

Ignore

If DNA is like a book, 
epigenetic marks are like 

sticky notes

Epigenetic marks tell our cells 
whether and how to read the genes

What do epigenetic marks do?

If DNA is like the alphabet, 
epigenetic marks are like the 
accents and punctuation

TAG   CAT   ACT

DNA sequence

Epigenetic marks

Read
Read

Ignore

Ignore

If DNA is like a book, 
epigenetic marks are like 

sticky notes

Epigenetic marks tell our cells 
whether and how to read the genes



Chromatin structures
 Eukaryotic chromatin structure can be viewed as a 

series of superimposed organizational layers. 
 At the root are the DNA sequence and its direct chemical 

modification by cytosine methylation. 
 The DNA is folded into nucleosomes — the 

fundamental units of chromatin — that comprise 
approximately 147 bp of DNA wrapped around a histone 
octamer. 

 The nucleosomal histones H2A, H2B, H3 and H4 can 
be chemically modified and exchanged with variants. 
The nucleosome positions along with histone variants 
and modifications make up the primary structure of 
chromatin. 

 Finally, three-dimensional models of chromatin in nuclei 
are now being developed with increasing precision and 
propose that there are additional sophisticated layers of 
genome regulation through higher-order organization 
and nuclear compartmentalization. 
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of secondary structures such as alpha-helices leads to the final
tertiary structure, whose conformation is crucial to protein func-
tion (Figure 1). Genome folding is not as rigidly or thermodynam-
ically defined as protein structure—single-cell experiments
reveal a high variability of adopted genomic configurations
(Nagano et al., 2013; Noordermeer et al., 2011a). Further, it
has not been shown that a specific chromosome structure is
essential for genomic functions. However, considering chromo-
some topology as a principle of folding, and TADs as chromo-
somal secondary structures, is a useful starting analogy. Here,
we discuss the relationship between DNA sequence (primary
structure), genomic sub-structures such as TADs (secondary
structure), overall chromosome folding (tertiary structure), and
genome function, positing that TADs and other localized struc-
tures form a blueprint for coordinated genome control.

Chromatin Loops in Gene Regulation
Seminal studies of the beta-globin locus showed that the globin
gene promoter more frequently interacted with distal enhancers
than intervening sequence, specifically in erythroid tissue where
the gene was transcribed (Palstra et al., 2003). Such results were
confirmed for other enhancer-promoter combinations (Kieffer-
Kwon et al., 2013; Li et al., 2012; Sanyal et al., 2012) and suggest
that chromatin looping brings genes and their regulatory ele-
ments in close proximity. For simplicity, wewill also refer to these
phenomena as loops, although in many cases they are more
likely to represent a statistical ensemble of transient contacts
than true stable structures (Giorgetti et al., 2014). Many
enhancer-promoter combinations share binding of common
transcription factors, and enhancers are also frequently tran-
scribed, especially when involved in interactions with target
genes (Sanyal et al., 2012). Such chromatin loops are thus pro-
posed to set up an ‘‘active chromatin hub,’’ providing a chromatin
environmentmore permissive to transcription than factors bound
directly to the promoter alone (Mousavi et al., 2013; Palstra et al.,
2003). In support of this model, enhancer-promoter interactions
within the human OCT4 locus, a gene encoding a key pluripo-
tency transcription factor, distinguish induced pluripotent stem
cells from non-reprogrammed cells (Zhang et al., 2013). The
non-reprogrammed cells had equivalent binding of the inducing
factors at the promoter and enhancer but no OCT4 expression.
However, it remains anopenquestionwhether chromatin looping
is a cause or consequence of transcriptional activation. Recent
elegant experiments have engineered chromatin loops within
themousebeta-globin locusbyexogenously targeting thedimer-
ization domain of the transcription factor Ldb1, which is naturally
present at the enhancers of the globin locus control region (Deng
et al., 2012; Deng et al., 2014). These induced chromatin loops
could partially rescue adult beta-globin expression in mutants
for erythroid transcription factors (Deng et al., 2012) or stimulate
fetal globin expression out of its normal developmental context
(Deng et al., 2014). Chromatin topology can thus be causally
linked to transcriptional regulation. As the globin genes are very
highly expressed in erythroid tissues, it will be interesting to see
the functional consequences of induced chromatin loops in
less transcriptionally permissive genomic and cell-type contexts.
The beta-globin active chromatin hub is progressively formed

during hematopoiesis (Palstra et al., 2003) and involves binding
sites for erythroid-specific transcription factors (Drissen et al.,
2004 for example), so enhancer-promoter contacts were pro-
posed to occur exclusively in cells where the target gene is being
transcribed. Although many cell-type-specific chromatin loops
have been characterized from more systematic approaches
(Heidari et al., 2014; Sanyal et al., 2012), evidence is also
emerging that chromatin topology and transcriptional regulation
can be temporally uncoupled. A recent analysis of the interaction
profiles of a hundred Drosophila mesodermal enhancers found
that more than 90% of the interactions were detectable before
mesoderm specification and were commonly linked to genes
with paused RNA polymerase (Ghavi-Helm et al., 2014). This
result suggests that chromatin loops may commonly poise a
gene for expression but that another signal is required for com-
plete transcriptional firing. In support of this model, induced
looping within the beta-globin locus rescued transcription

Figure 1. Analogous Hierarchical Organization of Protein and
Genome Structure
(A and B) Primary structures comprising the amino acid or nucleotide
sequence (packaged into a nucleosomal fiber in eukaryotic chromatin) on a
single polymeric chain form locally stabilized interactions to fold into sec-
ondary structures, such as polypeptide alpha-helices or beta-sheets, or
chromatin TADs. These domains in turn hierarchically co-associate to form a
tertiary structure of a protein or chromosome. The co-associations of multiple,
separately encoded subunits forms the final quaternary structure of a protein
complex or entire genome. Protein structures taken or derived from the RCSB
database (PDB 2KVQ, or 4BBR for quaternary structure).
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of secondary structures such as alpha-helices leads to the final
tertiary structure, whose conformation is crucial to protein func-
tion (Figure 1). Genome folding is not as rigidly or thermodynam-
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Chromatin Loops in Gene Regulation
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the gene was transcribed (Palstra et al., 2003). Such results were
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Kwon et al., 2013; Li et al., 2012; Sanyal et al., 2012) and suggest
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However, it remains anopenquestionwhether chromatin looping
is a cause or consequence of transcriptional activation. Recent
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themousebeta-globin locusbyexogenously targeting thedimer-
ization domain of the transcription factor Ldb1, which is naturally
present at the enhancers of the globin locus control region (Deng
et al., 2012; Deng et al., 2014). These induced chromatin loops
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for erythroid transcription factors (Deng et al., 2012) or stimulate
fetal globin expression out of its normal developmental context
(Deng et al., 2014). Chromatin topology can thus be causally
linked to transcriptional regulation. As the globin genes are very
highly expressed in erythroid tissues, it will be interesting to see
the functional consequences of induced chromatin loops in
less transcriptionally permissive genomic and cell-type contexts.
The beta-globin active chromatin hub is progressively formed
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2004 for example), so enhancer-promoter contacts were pro-
posed to occur exclusively in cells where the target gene is being
transcribed. Although many cell-type-specific chromatin loops
have been characterized from more systematic approaches
(Heidari et al., 2014; Sanyal et al., 2012), evidence is also
emerging that chromatin topology and transcriptional regulation
can be temporally uncoupled. A recent analysis of the interaction
profiles of a hundred Drosophila mesodermal enhancers found
that more than 90% of the interactions were detectable before
mesoderm specification and were commonly linked to genes
with paused RNA polymerase (Ghavi-Helm et al., 2014). This
result suggests that chromatin loops may commonly poise a
gene for expression but that another signal is required for com-
plete transcriptional firing. In support of this model, induced
looping within the beta-globin locus rescued transcription

Figure 1. Analogous Hierarchical Organization of Protein and
Genome Structure
(A and B) Primary structures comprising the amino acid or nucleotide
sequence (packaged into a nucleosomal fiber in eukaryotic chromatin) on a
single polymeric chain form locally stabilized interactions to fold into sec-
ondary structures, such as polypeptide alpha-helices or beta-sheets, or
chromatin TADs. These domains in turn hierarchically co-associate to form a
tertiary structure of a protein or chromosome. The co-associations of multiple,
separately encoded subunits forms the final quaternary structure of a protein
complex or entire genome. Protein structures taken or derived from the RCSB
database (PDB 2KVQ, or 4BBR for quaternary structure).
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Higher-order genome organization
 We can now determine a genome’s sequence and annotate linear chromatin composition, 

but our genome is not linear 
 Our knowledge of the 3D organization of the genome remains limited 
 Need to achieve high spatial and temporal resolution 
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benchmarks for assay performance have led to observations that cannot 
be directly compared. Additionally, we currently have limited  ability to 
integrate different data types (for example, chromatin interaction data 
and imaging-based distance measurements) and lack approaches that 
can measure and account for cell-to-cell variability in chromosome 
and nuclear organization. Finally, we lack mechanistic insights into the 
 relationships between chromosome conformation and nuclear processes, 
including transcription, DNA replication and  chromosome segregation. 
These gaps in our knowledge can be addressed by a highly  synergistic, 
multidisciplinary and integrated approach in which groups with  different 
expertise and knowledge, ranging from imaging and genomics to 
 computer science and physics, work closely together to study common 
cell systems using complementary methods.

Goals and strategy of the project
The 4DN Network will develop a set of approaches to map the structures 
and dynamics of the genome and to relate these features to its biological 
activities. The Network aims to generate quantitative models of nuclear 
organization in diverse cell types and conditions, including in single 
cells. Overall, we anticipate that these efforts will lead to new mechanistic  
insights into how the genome is organized, maintained, expressed and 
replicated, in both normal and disease states.

The 4DN Network will (1) develop, benchmark, validate and standardize  
a wide array of technologies to analyse the 4D nucleome; (2) integrate, 
analyse and model datasets obtained with these technologies to obtain 
a comprehensive view of the 4D nucleome; and (3) investigate the func-
tional role of various structural features of chromosome organization in 
transcription, DNA replication and other nuclear processes. These three 
main components are illustrated in Fig. 1.

To achieve these objectives, we have defined the following key steps. 
First, a set of common cell lines will be studied to enable direct cross- 
validation of data that are obtained with different methods (Table 1). 
Important criteria include a stable, haplotype-phased and normal 
 karyotype, ease of growth, ease of genome editing and suitability for 

(live-cell) imaging. Furthermore, given that cell populations are char-
acterized by cell-to-cell variation in their biological state (for example, 
cell-cycle stage), it will be important to use clonal cell populations that 
can be  synchronized, activated, induced or differentiated in a controlled 
manner.

Second, standards for data formats and quality will be established 
so that data can be shared broadly. This includes defining metrics for 
reproducibility and assessment of the sensitivity, specificity, resolution 
and precision with which aspects of the 4D nucleome can be measured.

Third, computational and analytical tools will be developed to  analyse 
individual datasets and to integrate, compare and cross-validate data 
obtained with different technologies. Importantly, they will enable the 
integration of the diverse datasets necessary to build comprehensive 
 models of the 4D nucleome.

Fourth, genetic, biochemical and biophysical approaches will be 
 developed to measure and perturb the roles of DNA sequences and 
trans-acting factors (proteins, RNA) in the formation of local and global 
aspects of the 4D nucleome and their impact on transcription and other 
nuclear functions.

Fifth, a common vocabulary will be developed to describe nuclear 
 features and biophysically derived principles guiding chromosome 
 folding. This is important, because currently, different structural descrip-
tions and interpretations have been used to describe features detected by 
different technologies, or even by the same methods. We need better and 
more precise descriptions of the underlying state of structural features that 
make up the 4D nucleome, for example, loops and domains, and develop 
a consistent terminology for when these features are detected by different 
technologies. This can be achieved by integrated analysis of data that will 
be obtained with a wide range of technologies that are used and under 
development by the Network.

A major goal is to compare and integrate the wealth of information 
that is anticipated to be generated by the Network. This will enable both 
benchmarking of experimental and computational approaches and better  
interpretation of what each data type (for example, chromosome 
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Figure 1 | The 4D Nucleome project. The project encompasses three 
components. a, Experimental mapping approaches are used to measure 
a range of aspects of the spatial organization of the genome, including 
chromatin loops, domains, nuclear bodies and so on. b, Computational 
and modelling approaches are used to interpret experimental observations 
and build (dynamic) spatial models of the nucleus. c, Perturbation 
experiments, for example, using CRISPR–Cas9-mediated genome 
engineering, are used for functional validation. In these studies chromatin 

structures are altered, for example, by removing chromatin loops, creating 
novel loops at defined positions or tethering regulatory components in 
selected regions to test their architectural function. These perturbation 
studies can be complemented with functional studies, for example, analysis 
of gene expression to assess the functional implications of chromatin 
folding. The nucleus image (a) shows live cell CRISPR labelling of specific 
loci on human chromosomes 1 and 13 and is provided by H. Ma and 
T. Pederson.
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trajectories relative to nuclear bodies. Generating models of chromosome and nuclear structure from combined 
genomic and imaging data, and validating these models is an essential first step towards dissecting the functional 
impact of nuclear structure in human health and disease. Such reference maps would vastly extend the scope 
of genome architecture research. Our proposed research is innovative because it integrates genomic with imag-
ing data at multiple scales to increase accuracy, precision and coverage in providing comprehensive 4D Nucle-
ome reference maps that will be capable of predicting mechanisms underpinning a broad range of biological 
systems. Our models will be available through a user-friendly interactive visualization platform to maximize im-
pact to the scientific community. We expect these innovations to drop the barrier for researchers in many areas 
of human health and disease research to benefit from recent advances in nuclear genome organization, opening 
new horizons for these areas. 
OMP-C. Roadmap of Biological Systems, Reference Datasets, Integrative Analysis and Visualization  
The modeling goals of our Center are to provide 
multiscale, genome-wide predictive models of 
large-scale chromosome structure relative to nu-
clear bodies in different cell types and biological 
contexts and to reveal functionally important 
mechanisms (Fig. 2). These goals require estab-
lished systems suitable for the collection of many 
data types. We propose selected cell lines with 
large amounts of existing genomic data as well as 
imaging data. We will further generate unique ge-
nomic and imaging data. Our models will establish 
structure-function connection during development, 
cell cycle, environmental and genetic perturba-
tions. Predictions from the models will be validated 
by genome engineering and DNA fluorescence in 
situ hybridization (FISH). 
Aim 1: Generate multimodal imaging and genomic datasets to reveal the structure, dynamics, and func-
tion of nuclear compartmentalization. We will immediately leverage large numbers of existing datasets (e.g., 
4DN and ENCODE) for Tier 1 and Tier 2 4DN Phase 1 cell lines to enable ongoing development of our modeling 
methods (Table 3 in “Samples, Data Collection, and External Data” section; SDE). Center-specific datasets will 
be generated for key 4DN cell lines chosen as targets for our Center’s integrative analysis. As new protocols are 
developed, we will map chromosome structure relative to additional nuclear bodies for these same cell lines, 
while expanding our mapping to new cell lines and cell conditions chosen for their relevance to key biological 
processes important in health and disease. These new cell lines and growth/differentiation conditions will permit 
us to further enhance, perturb, and/or test our models. A unique and innovative component of our approach is 
our systematic integration of genomic and relevant imaging data to inform our models. TSA-seq will map relative 
distances of chromatin to nuclear bodies, while high-throughput immunofluorescence will measure actual cyto-
logical distances between sets of chromosome loci and these same nuclear compartments. Our focus on the 
WTC11 human iPS cell line allows us to exploit the unusually sophisticated imaging methods developed by the 
Allen Institute of Cell Science (AICS), a division of the Allen Institute, that measure the size, shape, and nuclear 
positions of these same nuclear bodies in live cells during cell growth and differentiation. DamID will assess 
contact frequencies to some of those same landmarks. We will generate additional structural and biochemical 
mapping data (e.g., Hi-C, CUT&RUN/Tag23,24) and correlate our structural mapping with functional readouts of 
transcription, gene expression, and DNA replication timing (by PRO-seq25, RNA-seq, Repli-seq19,26). We will use 
Oligopaints/OligoSTORM27-29 to trace predicted chromosome trajectories through the nucleus at different scales 
as applicable as well as high-throughput FISH (hiFISH, HIPMap)30,31, immuno-FISH and live-cell imaging to test 
the predicted proximity of individual loci to nuclear landmarks. Finally, we will employ genome engineering meth-
ods to directly test mechanisms, causality and functionality of nuclear compartmentalization.  
Aim 2: Develop and apply computational tools for data-driven genome structure modeling and integra-
tive analysis of nuclear compartmentalization. We will develop a data-driven integrative modeling platform to 
determine physical models of the interphase nucleus, predict the folding of chromosomes relative to major nu-
clear bodies, and therefore provide a link between genomic and microscopy approaches. Our population-based 
method20,32 explicitly models cell-to-cell variations in genome structures, which reveals insights to 3D genome 
dynamics. It provides a framework for comprehensive integration of all available data, including ensemble-aver-
age and single-cell data, such as those from large-scale microscopic imaging, to increase the coverage, 

 
Fig. 2: Overview of the proposed UM1 Center project components. See Fig. 4 
for detailed Center organization and the workflow of proposed research tasks. 
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Multiscale 3D genome organization in single cells
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Chromatin loops and stripes
At the smallest length scale, chromatin loops are pairs of genomic 
loci that have higher contact frequency than expected based on 

random interactions and their genomic distance. Two types of existing 
loop-calling methods differ from each other by whether the background 
expectation is based on a genome-wide (global) model or local context 
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Fig. 1 | Overview of multiscale three-dimensional genome features and assays. 
a, Schematic view of multiscale three-dimensional chromatin organization: DNA 
is packaged into chromosome territories, where it is intertwined with nuclear 
bodies such as nuclear speckles. Packaging is achieved through progressively 
finer-resolution structural motifs such as compartments (megabase scale), 
chromatin domains such as topologically associating domains (TADs, 
100 kilobases to a few megabases) and chromatin loops (10 to 100 kilobases 
apart, mediated by architectural proteins such as cohesin and CTCF).  
b, Experimental methods such as Hi-C can be used to capture chromatin contact 
frequency between pairwise loci or across multiple loci. c, Ligation-free methods 
(such as DNA adenine methyltransferase identification (DamID), tyramide signal 
amplification sequencing (TSA-seq) and genomic loci positioning by sequencing 

(GPSeq)) measure distance and contact frequency relative to nuclear bodies or 
positioning within the nucleus. LaminB1 and SON are proteins that have specific 
localizations within the cell nucleus. LaminB1 is localized to the nuclear lamina, 
and SON is primarily found in nuclear speckles. Pos 1 and Pos 2 represent two 
different locations of the chromatin fibre within the cell nucleus, as shown in 
the cartoon on the left. Their corresponding genomic mapping readouts are 
marked on the genomic track on the right. d, Single-cell Hi-C can be used to 
detect variation in chromatin interactions among cells in complex tissues, for 
example, by adding multiplexed barcodes to individual cells. e, Multiplexed DNA 
fluorescence in situ hybridization (DNA FISH) provides direct spatial location of 
DNA loci and traces chromatin conformations in the nucleus.

 What does 3D genome look 
like in single cells? 

 How do multiscale 3D 
features vary in individual 
cells and different cell types? 

 Structure-function 
relationships
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SPICEMIX enables integrative single-cell spatial modeling
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Fig. 4 | Metagenes and refined cell types discovered by SPICEMIX from the 
STARmap data of the mouse primary visual cortex10. Note that colors 
throughout the figure of cells and labels correspond to the cell-type assignments 
of SPICEMIX. a, UMAP plots of the latent states of SPICEMIX and the dendrogram 
of the arithmetic average of the expression for each cell type of SPICEMIX (right). 
It is highlighted in a (left) that SPICEMIX delineated eL6 neurons into three 
subtypes enclosed in the green cycle and delineated oligodendrocytes and OPCs 
into three separate subtypes: Oligo-1 (beige), Oligo-2 (blue) and Astro-2/OPC 
(magenta), enclosed within the beige dashed cycle. b, Left: average z-score 
normalized expression of known marker genes within SPICEMIX cell types, along 
with the number of cells belonging to each type (colored bar plot). The colored 
boxes on the top following the name of each marker gene correspond to their 
known associated cell types. Middle: agreement of SPICEMIX cell-type 

assignments with those of the original analysis in ref. 10. Right: average 
expression of inferred metagenes within SPICEMIX cell types. The expression is 
normalized by the standard deviation per metagene. The average proportion of 
metagenes 12 and 13 in oligodendrocyte cell types, which helped delineate 
subtypes, are highlighted by black arrows. c, Top: the inferred pairwise spatial 
affinity of metagenes, or Σ−1

x

. The strong attraction between metagene 5 and 
metagene 7, which helped distinguish excitatory eL6 neurons, is highlighted by 
the black arrow. Bottom: the inferred pairwise spatial affinity of cell types. d, In 
situ map of SPICEMIX cell-type assignments for all cells. Cell type abbreviations 
(following those of ref. 10): HPC: hippocampal excitatory subtype; PVALB: 
inhibitory neurons; Astro-1: astrocyte subtype; Astro-2/OPC: astrocytes and 
oligodendrocyte precursor cells; Oligo-1 and Oligo-2: oligodendrocyte subtypes.
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STEAMBOAT: modeling cell-cell interactions
 The molecular profile of cells is a result of 

superimposing: 
• intrinsic factors 
• interactions at multiple scales 

 How do we decompose them and 
model such multiscale interactions?
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Gene expression & spatial location

Attention-based multiscale 
delineation of cellular 
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Heimdall: A comprehensive paradigm for single-cell foundation models (scFMs)
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Figure 1: Overview figure Overview figure description here.

by plain concatenation or the incorporation of biological priors. Since existing scFMs can be written as
a particular Fg + Fe + Fc configuration, HEIMDALL offers a single interface that both reproduces past
models and lets users swap one component at a time to test new strategies.

Crucially, we do not pretrain. Using a fixed transformer architecture [TODO: add num of layers]

starting from random weights we train a small model on the task of cell type classification, so that any
performance difference must stem from the representation. This "no-pretrain" protocol cuts experiment
time from weeks to hours on a single GPU, enabling exhaustive factorial sweeps.

We evaluate tokenizer variants on two transfer-learning axes that can be challenging for scRNA-
seq methods: (i) gene-panel shift- predicting with unseen or sparsely overlapping genes, (ii) tissue shift-
training on one organ and testing on another. HEIMDALL standardizes data loading, training, and metrics,
so results are directly comparable and reproducible.

[SA: Cite “How to build the virtual cell with artificial intelligence: Priorities and opportunities”,
which discusses how the AIVC should combine molecular representations (i.e. FG outputs) to create the

3

Heimdall explores design choices in single-cell FMs
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Figure 1: Overview figure Overview figure description here.

by plain concatenation or the incorporation of biological priors. Since existing scFMs can be written as
a particular Fg + Fe + Fc configuration, HEIMDALL offers a single interface that both reproduces past
models and lets users swap one component at a time to test new strategies.

Crucially, we do not pretrain. Using a fixed transformer architecture [TODO: add num of layers]

starting from random weights we train a small model on the task of cell type classification, so that any
performance difference must stem from the representation. This "no-pretrain" protocol cuts experiment
time from weeks to hours on a single GPU, enabling exhaustive factorial sweeps.

We evaluate tokenizer variants on two transfer-learning axes that can be challenging for scRNA-
seq methods: (i) gene-panel shift- predicting with unseen or sparsely overlapping genes, (ii) tissue shift-
training on one organ and testing on another. HEIMDALL standardizes data loading, training, and metrics,
so results are directly comparable and reproducible.

[SA: Cite “How to build the virtual cell with artificial intelligence: Priorities and opportunities”,
which discusses how the AIVC should combine molecular representations (i.e. FG outputs) to create the

3

Make design choices composable and interpretable



Systems level perturbations lead to disease

 Different constituents in the cell do not function as single entities 
 Disease causing mutations exhibit high degree of heterogeneity among individuals; but the 

impact of network level perturbations may be more important to model 
 Different components in the tissue are also interconnected
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The machine is learning something — but are we?
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