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We don’t quite understand ourselves
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Decoding the “language” of genomes, cells, and tissues

Spatial coordinates
of tissue
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Biology is multiscale. So must our models be.



Building an organism

III)NA Every cell has the same sequence of DNA
ce

e

Subsets of the DNA sequence
determine the identity and function
of different cells




Central dogma

Proteins do most of the work in biology,
and are encoded by subsequences of
DNA, known as genes.
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The human genome: the “blueprint” of our body
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DNA, Chromosome, and Genome
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Genome

A genome is an organism’'s complete set of DNA (including its genes)
In humans, less than 2% of the genome actually encodes for genes.

However, a much larger percentage of the genome is transcribed (miRNAs, IncRNAs, and
other non-coding RNAs...)

... and a large fractions of the rest of the genome serves as a control regions, i.e., these
regions are involved in determining when genes are turned on and off depending on the
context



What is a gene?

Start codon  codons  ponor site

ATGCCCTTCTCCAACAG

Transcription
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Structure of genes in mammalian cells

Within coding DNA genes there can be un-
translated regions (Introns)

The translated parts are termed Exons.
These are the segments of DNA that
contain the protein coding information

Following transcription Introns are
removed and Exons are spliced to make
the protein

Alternative splicing increases the
potential number of different proteins,
allowing the generation of millions of
proteins from a small number of genes
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High-throughput sequencing

Cost per Human Genome

$100,000,000

$10,000,000

Moore’s Law
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!
$100

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

= High-throughput DNA sequencing — One of the most disruptive technologies in the past
decade
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Interpret the genetic code
I.e. How the Human Genome works?

ReAoiNG THe ENTIRE (
qegoME. CoDE . ..
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Understanding the genome

= View from 2000

* Protein-coding genes
* Regulatory sequence
* Transposons

= \We now know ...

4 /] these are
WRONG!
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How many genes do we have?

What we used to think

v

1 1 || 1 1
0 10,000 20,000 30,000 40,000 50,000
Approximate number of genes

Gene numbers do not correlate with organism complexity. |
'Many gene families are surprisingly old.

(-
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Main components in the human genome
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Only 1.5% of the human genome are protein-coding regions
Transposable elements make up almost half of the human genome
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Genscan (Burge and Karlin, 1998)
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The spectrum of genetic variation

Variation Rearrangement type Size range?
Single base-pair changes Single nucleotide polymorphisms, point 1 bp
mutations
Small insertions/deletions Binary insertion/deletion events of short 1-50 bp
sequences (majority <10 bp in size)
Short tandem repeats Microsatellites and other simple repeats 1-500 bp
Fine-scale structural variation Deletions, duplications, tandem repeats, 50 bp to 5 kb

1NVersions

Retroelement insertions

SINEs, LINEs, I'TRs, ERVsP

300 bp to 10 kb

Intermediate-scale structural Deletions, duplications, tandem repeats, 5 kb to 50 kb
variation 1INVersions
Large-scale structural variation Deletions, duplications, large tandem repeats, 50 kb to 5 Mb

1nversions

Chromosomal variation

Euchromatic variants, large cytogenetically

visible deletions, duplications, translocations,

inversions, and aneuploidy

~5 MbDb to entire
chromosomes
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Transcription factors (TFs) in the human genome

= 300 TFs bind to core promoter regions
e General transcription machinery (e.g., RNA polymerase)
e Required for transcription of most protein-coding genes

= 1500 TFs bind to other regions in the genome
e Proximal promoter, enhancer, silencer
* Regulate a subset of genes

Transcribed gene body
| |
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| i\ 1\ \\ 1\ u\ e \\\ 1\\ \1;\1 u\ 1\\ \l\ \\\ 1\\ 1\\: \\'ﬂl
[ u\ ull\ R ) ARED TRD AL D AR R R e

i\\ﬂ\ AN e N \”"( ’Q\

Blocked enhancer Promoter Interacting enhancer

o HiKdmel H3IKdme3
@ HIK36me3




How is specificity of binding achieved?

= Consensus motif
« Commonly found sequence

* Shows which nucleotide is most abundant at each position, represented as a
Position Weight Matrix (PWM)

. E.g., GATA1 binding motif: [AT] G A T A [AG]

AGATAA

= Motif — A subsequence (substring) that occurs in multiple sequences with
a biological importance.

= Motifs can be totally constant or have variable elements.

= Motifs for regulatory elements
e Binding sites for proteins
e Short sequences (5-25)
e Up to certain range, e.g., 1000 bp (or farther), from gene
* |nexactly repeating patterns (challenge!)
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= Humans have multiple
types of cells

= |ndividual cell types also
differentiate into
sub-cell types

= | ots more cell types left
to discover!
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DNA is only half the story

= Variations in DNA alone may not entirely account for variations in phenotypic traits

= Organisms with identical DNA often exhibit distinct phenotypes
e Plants, Insects, Mammals
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What is epigenetics/epigenomics?

= A mitotically or meiotically heritable state of different gene activity and expression
(phenotype) that is independent of differences in DNA sequence (genotype)

e — based on Conrad Waddington, 1942

= The sum of the alterations to the chromatin template that collectively establish and

propagate different patterns of gene expression (transcription) and silencing from the same
genome.

= Epigenetic changes influence the phenotype without altering the genotype.

= While epigenetics often refers to the study of single genes or sets of genes, epigenomics
refers to more global analyses of epigenetic changes across the entire genome.
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Epigenetic mechanisms

= DNA methylation

 Normal cells — role in gene expression and chromosome stability
« Cancer cells — consequences of aberrant hypo- and hyper-methylation

= Histone modification
* Normal cells — the histone code
e Cancer cells — consequences of altered histone modifying enzymes

= |nteraction between DNA methylation, histone modifications, and other players such as non-
coding RNAs

= Cell and tissue type specificity

= Gene-environment interaction, disease susceptibility

29



= [f DNA is like the alphabet,
epigenetic marks are like the
accents and punctuation

DNA sequence
TAG CAT ACT
TAG! CAT? ACHE

Epigenetic marks

= [f DNA is like a book, epigenetic
marks are like sticky notes
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Chromatin structures

Eukaryotic chromatin structure can be viewed as a
series of superimposed organizational layers.

At the root are the DNA sequence and its direct chemical
modification by cytosine methylation.

The DNA is folded into nucleosomes — the
fundamental units of chromatin — that comprise
approximately 147 bp of DNA wrapped around a histone
octamer.

The nucleosomal histones H2A, H2B, H3 and H4 can
be chemically modified and exchanged with variants.
The nucleosome positions along with histone variants
and modifications make up the primary structure of
chromatin.

Finally, three-dimensional models of chromatin in nuclei
are now being developed with increasing precision and
propose that there are additional sophisticated layers of
genome regulation through higher-order organization
and nuclear compartmentalization.
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MAKING A GENOME MANUAL

EXPERIMENTAL TARGETS

DNA methylation: regions
layered with chemical methyl
groups, which regulate gene
expression.

Open chromatin: areas in
which the DNA and proteins
that make up chromatin are
accessible to regulatory pro-
teins.

RNA binding: positions
where regulatory proteins
attach to RNA.

RNA sequences: regions that
are transcribed into RNA.

ChIP-seq: technique that
reveals where proteins bind
to DNA.

Modified histones: histone
proteins, which package DNA
into chromosomes, modified
by chemical marks.

Transcription factors: pro-
teins that bind to DNA and
regulate transcription.

regions as possible — but the project is still far from complete.
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one genome-wide
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Higher-order genome organization

= We can now determine a genome’s sequence and annotate linear chromatin composition,
but our genome is not linear

= Our knowledge of the 3D organization of the genome remains limited
= Need to achieve high spatial and temporal resolution

Nucleus
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Large-scale genome organization in the nucleus

Mapping data for
nuclear structure and function
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Multiscale 3D genome organization in single cells

Chromatin loop Chromatin domain (TADs) Compartments Chromosome territory

Recover missing information

e Cohesin complex ‘ . CTCF O Nuclear speckles / Chromatin domain (TADs)
/ﬂ Zhang et al.
Chromatin Distance Observed Nat Rev Genetics 2024
structures maps scHi-C

- R » What does 3D genome look
like in single cells?
Single cell » How do multiscale 3D
% ~. X . features vary in individual
) Embedding & Clustering cells and different cell types?
| F e = Structure-function
£ o ® O cluster 1 _ _
. S B " ecustr2 relationships
3 ~ ©cluster3
dm1
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SPICEMIX enables integrative single-cell spatial modeling

Superficial(— L2/3 L4
Fo A

www.nature.com/ng / January 2023 Vol, 55 No. l

nature genetlcs
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Single-cell spatial modeling
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SpiceMix clusters Ben Chidester Tianming Zhou

January 2023 issue

Chidester #, Zhou #, Alam, and Ma. Nature Genetics, 2023
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STEAMBOAT: modeling cell-cell interactions

= The molecular profile of cells is a result of
superimposing:
 intrinsic factors
* Interactions at multiple scales

= How do we decompose them and
model such multiscale interactions?

o
® S

o

Gene expression & spatial location

Attention-based multiscale
delineation of cellular
Interactions In tissues

Shaoheng Liang

Armingol et al. Nat Rev Genet 2021 Liang et al. bioRxiv 2025
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Heimdall explores design choices In single-cell FMs

Ellie Haber

Transformer

Spencer Krieger

Gene Single-cell
Gene IDs di g :
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Make design choices composable and interpretable

Shahul Alam

Nick Ho



Systems level perturbations lead to disease

Motility Circuits Cytostasis and
Differentiation
Circuits

g anti-growth
proteases izgron
d\" : . ) ! a TCF
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Proliferation
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O Myc ——— expression p53
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OJ'K 0—io

hormones = (C )—» 0O » O

T

death
abnormality : 6 factors

sensor

Viability Circuits

= Different constituents in the cell do not function as single entities

= Disease causing mutations exhibit high degree of heterogeneity among individuals; but the
impact of network level perturbations may be more important to model

= Different components in the tissue are also interconnected
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~/ [ Loss minimized.
A~ \ Accuracy:99.9%

The machine is learning something — but are we?
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