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Genome function in different cell types

 Numerous different cell types with distinct functions in our body 
 Same genome but different gene regulation and epigenome 
 Development of single cell technology provides closer look at cell types and cell states
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Fig. 1 | Transcriptomic cell-type taxonomy of the whole mouse brain. a, Left, 
the transcriptomic taxonomy tree of 338 subclasses organized in a dendrogram 
(10xv2: n = 1,699,939 cells; 10xv3: n = 2,341,350 cells; 10x Multiome: n = 1,687 
nuclei). The neighbourhood and class levels are marked on the taxonomy tree. 
Classes marked with asterisks are included in the NN–IMN-GC neighbourhood. 
The IDs of every third subclass are shown to the right of the dendrogram.  
Full subclass names are provided in Supplementary Table 7. Following subclass 
IDs, bar plots represent (left to right): major neurotransmitter type, region 
distribution of profiled cells, number of clusters per subclass, number of 
RNA-seq cells analysed per subclass, and number of cells analysed by MERFISH 
per subclass. Subclasses marked with grey dots contain sex-dominant clusters. 
Sex-dominant clusters within a subclass are identified by calculating the odds 
and log P value for male/female distribution per cluster. Clusters with odds < 0.2 
and log10(P value) < −10 are considered to be sex-dominant. b–e, UMAP 
representation of all cell types coloured by class (b), subclass (c), brain region 
(d) and major neurotransmitter type (e). Colour schemes for a–e are shown in 

the key at the bottom right of the figure. Astro, astrocyte; CB, cerebellum;  
CGE, caudal ganglionic eminence; CNU, cerebral nuclei; CR, Cajal–Retzius;  
CT, corticothalamic; CTX, cerebral cortex; CTXsp, cortical subplate; DG, dentate 
gyrus; EA, extended amygdala; Epen, ependymal; EPI, epithalamus;  
ET, extratelencephalic; GC, granule cell; HB, hindbrain; HPF, hippocampal 
formation; HY, hypothalamus; HYa, anterior hypothalamic; IMN, immature 
neurons; IT, intratelencephalic; L6b, layer 6b; LGE, lateral ganglionic eminence; 
LH, lateral habenula; LSX, lateral septal complex; MB, midbrain; MGE, medial 
ganglionic eminence; MH, medial habenula; MM, medial mammillary nucleus; 
MY, medulla; NN, non-neuronal; NP, near-projecting; OB, olfactory bulb;  
OEC, olfactory ensheathing cells; OLF, olfactory areas; Oligo, oligodendrocytes; 
OPC, oligodendrocyte precursor cells; P, pons; PAL, pallidum; STR, striatum; 
TH, thalamus. Neurotransmitter types: Chol, cholinergic; Dopa, dopaminergic; 
GABA, GABAergic; Glut, glutamatergic; Glyc, glycinergic; Hist, histaminergic; 
Nora, noradrenergic; Sero, serotonergic; NA, not applicable (no neurotransmitter 
detected).
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Multiscale cellular structure and function

 Single-cell 3D epigenome and gene regulation 
 Cellular spatial organization and interaction 
 graph / hypergraph neural network, self-supervised, latent 

embedding, metagene, attention, (foundation model)



trajectories relative to nuclear bodies. Generating models of chromosome and nuclear structure from combined 
genomic and imaging data, and validating these models is an essential first step towards dissecting the functional 
impact of nuclear structure in human health and disease. Such reference maps would vastly extend the scope 
of genome architecture research. Our proposed research is innovative because it integrates genomic with imag-
ing data at multiple scales to increase accuracy, precision and coverage in providing comprehensive 4D Nucle-
ome reference maps that will be capable of predicting mechanisms underpinning a broad range of biological 
systems. Our models will be available through a user-friendly interactive visualization platform to maximize im-
pact to the scientific community. We expect these innovations to drop the barrier for researchers in many areas 
of human health and disease research to benefit from recent advances in nuclear genome organization, opening 
new horizons for these areas. 
OMP-C. Roadmap of Biological Systems, Reference Datasets, Integrative Analysis and Visualization  
The modeling goals of our Center are to provide 
multiscale, genome-wide predictive models of 
large-scale chromosome structure relative to nu-
clear bodies in different cell types and biological 
contexts and to reveal functionally important 
mechanisms (Fig. 2). These goals require estab-
lished systems suitable for the collection of many 
data types. We propose selected cell lines with 
large amounts of existing genomic data as well as 
imaging data. We will further generate unique ge-
nomic and imaging data. Our models will establish 
structure-function connection during development, 
cell cycle, environmental and genetic perturba-
tions. Predictions from the models will be validated 
by genome engineering and DNA fluorescence in 
situ hybridization (FISH). 
Aim 1: Generate multimodal imaging and genomic datasets to reveal the structure, dynamics, and func-
tion of nuclear compartmentalization. We will immediately leverage large numbers of existing datasets (e.g., 
4DN and ENCODE) for Tier 1 and Tier 2 4DN Phase 1 cell lines to enable ongoing development of our modeling 
methods (Table 3 in “Samples, Data Collection, and External Data” section; SDE). Center-specific datasets will 
be generated for key 4DN cell lines chosen as targets for our Center’s integrative analysis. As new protocols are 
developed, we will map chromosome structure relative to additional nuclear bodies for these same cell lines, 
while expanding our mapping to new cell lines and cell conditions chosen for their relevance to key biological 
processes important in health and disease. These new cell lines and growth/differentiation conditions will permit 
us to further enhance, perturb, and/or test our models. A unique and innovative component of our approach is 
our systematic integration of genomic and relevant imaging data to inform our models. TSA-seq will map relative 
distances of chromatin to nuclear bodies, while high-throughput immunofluorescence will measure actual cyto-
logical distances between sets of chromosome loci and these same nuclear compartments. Our focus on the 
WTC11 human iPS cell line allows us to exploit the unusually sophisticated imaging methods developed by the 
Allen Institute of Cell Science (AICS), a division of the Allen Institute, that measure the size, shape, and nuclear 
positions of these same nuclear bodies in live cells during cell growth and differentiation. DamID will assess 
contact frequencies to some of those same landmarks. We will generate additional structural and biochemical 
mapping data (e.g., Hi-C, CUT&RUN/Tag23,24) and correlate our structural mapping with functional readouts of 
transcription, gene expression, and DNA replication timing (by PRO-seq25, RNA-seq, Repli-seq19,26). We will use 
Oligopaints/OligoSTORM27-29 to trace predicted chromosome trajectories through the nucleus at different scales 
as applicable as well as high-throughput FISH (hiFISH, HIPMap)30,31, immuno-FISH and live-cell imaging to test 
the predicted proximity of individual loci to nuclear landmarks. Finally, we will employ genome engineering meth-
ods to directly test mechanisms, causality and functionality of nuclear compartmentalization.  
Aim 2: Develop and apply computational tools for data-driven genome structure modeling and integra-
tive analysis of nuclear compartmentalization. We will develop a data-driven integrative modeling platform to 
determine physical models of the interphase nucleus, predict the folding of chromosomes relative to major nu-
clear bodies, and therefore provide a link between genomic and microscopy approaches. Our population-based 
method20,32 explicitly models cell-to-cell variations in genome structures, which reveals insights to 3D genome 
dynamics. It provides a framework for comprehensive integration of all available data, including ensemble-aver-
age and single-cell data, such as those from large-scale microscopic imaging, to increase the coverage, 

 
Fig. 2: Overview of the proposed UM1 Center project components. See Fig. 4 
for detailed Center organization and the workflow of proposed research tasks. 
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Large-scale genome organization in the nucleus

Multiscale Analyses of  
4D Nucleome Structure  

and Function by Comprehensive 
Multimodal Data Integration 



Hi-C contact map
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-C maps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood (right). We detect at

least six subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left)

indicate the presence of small domains of condensed chromatin, whose median length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the

presence of loops (right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.

Cell 159, 1665–1680, December 18, 2014 ª2014 Elsevier Inc. 1667
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Multiscale 3D genome organization
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Zhang et al. Nat Rev Genetics 2024 
(w/ Frank Alber and Tom Misteli)

Nature Reviews Genetics

Review article

Chromatin loops and stripes
At the smallest length scale, chromatin loops are pairs of genomic 
loci that have higher contact frequency than expected based on 

random interactions and their genomic distance. Two types of existing 
loop-calling methods differ from each other by whether the background 
expectation is based on a genome-wide (global) model or local context 
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Fig. 1 | Overview of multiscale three-dimensional genome features and assays. 
a, Schematic view of multiscale three-dimensional chromatin organization: DNA 
is packaged into chromosome territories, where it is intertwined with nuclear 
bodies such as nuclear speckles. Packaging is achieved through progressively 
finer-resolution structural motifs such as compartments (megabase scale), 
chromatin domains such as topologically associating domains (TADs, 
100 kilobases to a few megabases) and chromatin loops (10 to 100 kilobases 
apart, mediated by architectural proteins such as cohesin and CTCF).  
b, Experimental methods such as Hi-C can be used to capture chromatin contact 
frequency between pairwise loci or across multiple loci. c, Ligation-free methods 
(such as DNA adenine methyltransferase identification (DamID), tyramide signal 
amplification sequencing (TSA-seq) and genomic loci positioning by sequencing 

(GPSeq)) measure distance and contact frequency relative to nuclear bodies or 
positioning within the nucleus. LaminB1 and SON are proteins that have specific 
localizations within the cell nucleus. LaminB1 is localized to the nuclear lamina, 
and SON is primarily found in nuclear speckles. Pos 1 and Pos 2 represent two 
different locations of the chromatin fibre within the cell nucleus, as shown in 
the cartoon on the left. Their corresponding genomic mapping readouts are 
marked on the genomic track on the right. d, Single-cell Hi-C can be used to 
detect variation in chromatin interactions among cells in complex tissues, for 
example, by adding multiplexed barcodes to individual cells. e, Multiplexed DNA 
fluorescence in situ hybridization (DNA FISH) provides direct spatial location of 
DNA loci and traces chromatin conformations in the nucleus.
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Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-C maps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood (right). We detect at

least six subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left)

indicate the presence of small domains of condensed chromatin, whose median length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the

presence of loops (right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.

Cell 159, 1665–1680, December 18, 2014 ª2014 Elsevier Inc. 1667

loops

share this feature of classical insulators. A classical boundary element
is also known to stop the spread of heterochromatin. Therefore, we
examined the distribution of the heterochromatin mark H3K9me3 in
humans and mice in relation to the topological domains12,13. Indeed,
we observe a clear segregation of H3K9me3 at the boundary regions
that occurs predominately in differentiated cells (Fig. 2d, e and
Supplementary Fig. 11). As the boundaries that we analysed in

Fig. 2d are present in both pluripotent cells and their differentiated
progeny, the topological domains and boundaries appear to pre-mark
the end points of heterochromatic spreading. Therefore, the domains
do not seem to be a consequence of the formation of heterochromatin.
Taken together, the above observations strongly suggest that the topo-
logical domain boundaries correlate with regions of the genome dis-
playing classical insulator and barrier element activity, thus revealing a
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Figure 1 | Topological domains in the mouse ES cell genome. a, Normalized
Hi-C interaction frequencies displayed as a two-dimensional heat map
overlayed on ChIP-seq data (from Y. Shen et al., manuscript in preparation),
directionality index (DI), HMM bias state calls, and domains. For both
directionality index and HMM state calls, downstream bias (red) and upstream
bias (green) are indicated. b, Schematic illustrating topological domains and
resulting directional bias. c, Distribution of the directionality index (absolute
value, in blue) compared to random (red). d, Mean interaction frequencies at all
genomic distances between 40 kb to 2 Mb. Above 40 kb, the intra- versus inter-
domain interaction frequencies are significantly different (P , 0.005, Wilcoxon
test). e, Box plot of all interaction frequencies at 80-kb distance. Intra-domain
interactions are enriched for high-frequency interactions. f–i, Diagram of intra-
domain (f) and inter-domain FISH probes (g) and the genomic distance
between pairs (h). i, Bar chart of the squared inter-probe distance (from ref. 6)
FISH probe pairs. mESC, mouse ES cell. Error bars indicate standard error
(n 5 100 for each probe pair).
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Figure 2 | Topological boundaries demonstrate classical insulator or
barrier element features. a, Two-dimensional heat map surrounding the Hoxa
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Challenges for single-cell 3D genome analysis using scHi-C data

 High dimensionality 
 Sparse and noisy data 
 Multiscale 3D genome features

7

Zhou et al. Annu Rev Biomed Data Sci 2021 
Zhang et al. Nat Rev Genetics 2024

Embedding & Clustering

cluster 1
cluster 2
cluster 3

dim 1

di
m

 2

Recover missing information
Bulk

Single cell
 What does 3D 

genome look like 
in single cells? 

 How do 
multiscale 3D 
features vary in 
individual cells 
and different cell 
types?



Hypergraphs for higher-order interactions

8

 Hypergraphs are used to represent higher-order interactions 
• Example: events (human, location, activity) 

 A hypergraph  
•  /  : the set of nodes / hyperedges 
• : a hyperedge connects two or more nodes 

• ,  is a -uniform hypergraph 

 Input: a hypergraph with features for each node 
(non-uniform heterogeneous hypergraph) 

 We aim to 
• Learn embeddings for the nodes in the hypergraph 
• Learn to predict the existence of hyperedges given the node embeddings 

𝐻 = (𝑉, 𝐸)
𝑉 𝐸
𝑒 ∈ 𝐸
∀𝑒 ∈ 𝐸,   𝑒 = 𝑘 𝐻 𝑘

Hyper-SAGNN — Hypergraph representation learning

Zhang et al. ICLR 2020

Example of a graph

Example of a hypergraph



Higashi — modeling scHi-C data as a hypergraph 

9
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Figure 1: Overall design of Higashi and the evaluation of Higashi embeddings on real data. a. Overview of the Higashi framework
for scHi-C analysis. The input scHi-C dataset is transformed into a hypergraph where each hyperedge connects one cell node and two
bin nodes. A hypergraph neural network is trained to capture high-order interaction patterns within the constructed hypergraph. The
trained neural network is able to generate embeddings for scHi-C data and impute the sparse scHi-C contact maps. The imputed contact
maps and the embeddings allow detailed characterization of multiscale 3D genome features and also multiomic integrative analysis. b.
Quantitative evaluation of Higashi on the three public scHi-C datasets by comparing to HiCRep/MDS [19], scHiCluster [21], and LDA [20].
The performances are measured by Adjusted Rand Index (ARI), and also ACROC scores from the unsupervised cell type identification
tasks. See also Fig. S3. c. Quantitative evaluation of different embeddings of the sn-m3C-seq data [17] using Micro-F1, Macro-F1, and
Adjusted Rand Index (ARI) scores. The embeddings are generated through different embedding methods on scHi-C, the Higashi joint
modeling of scHi-C and CG methylation profile (mCG), and the Scanorama [45] embeddings on mCG. Dimensions of different embedding
methods are kept the same for fair comparisons. scHi-C are binned to 1Mb resoution while mCG are generated at 100Kb resolution. d.
UMAP visualization of the Higashi embeddings of the joint modeling of both chromatin conformation and methylation of the sn-m3C-seq
data [17].
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Higashi — Zhang, Zhou, and Ma. Nature Biotechnology, 2022 
(also Fast Higashi — Zhang et al. Cell Systems 2023)
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Figure S13: Examples of the Higashi imputation on WTC-11 scHi-C at 50Kb resolution (chr21:15Mb-20Mb)
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Figure 3: Higashi enables detailed characterization of 3D genome features and their connections to gene transcription at single-cell
resolution. a. Compartment score annotations for WTC-11 scHi-C data at 50Kb resolution. The merged scHi-C correlation matrix of chr21
(before and after imputation) as well as the compartment scores called from the bulk Hi-C contact map, the pooled scHi-C contact map,
and each single-cell contact map are shown. The cells that are likely near the mitosis stage are marked with “*” in the single-cell PC1
heatmap. b. Global comparisons of transcriptional variability on regions with variable and stable compartment annotations (*** indicates
P-value<1e-3). There are 5,075 genes that have stable single-cell compartment scores with average transcription activity variability equal
to 86.0. There are 5,071 genes that have dynamic single-cell compartment score with average transcription activity variability equal to 77.4.
The one sided t-test P-value = 1.34⇥10�7. c. Log2 difference of transcriptional variability of genes with variable versus stable compartment
annotations within a Mb scale window. d. Visualization of standard deviation of compartment scores around genes with variable or stable
transcriptional level. In b,c,d, the transcriptional variability is quantified as the coefficient of variation of the imputed scRNA-seq data. e.
TAD-like domain boundary calling for WTC-11 scHi-C at 50Kb resolution. The merged scHi-C contact maps at chr10:2,500,000-12,500,000
and the calculated insulation scores are shown. The cells that are likely near the mitosis stage are marked with “*” in the single-cell
insulation score heatmap. Regions that represent the present/absent dynamics of single-cell domain boundaries are marked with a yellow
box. Regions that represent the sliding dynamics of single-cell domain boundaries are marked with an orange box. f. Scatter plot of the
single-cell insulation scores versus the occurrence frequency in the cell population of shared domain boundaries. For each cell, only the
insulation scores of presented shared boundaries are visualized, i.e., each dot corresponds to a single-cell domain boundary. g. CTCF
binding at domain boundaries from different occurrence frequency groups. h. Venn diagram of the overlap between genes near variable
domain boundary in WTC-11 (light red) and differentially expressed genes during cell differentiation (light blue). i. Comparison of cell-to-cell
variability of insulation scores between differentially expressed genes (DEGs) and non-DEGs. The high variance of insulation scores of
DEGs indicates that the DEGs are enriched near domain boundaries with higher variability (*** indicates P-value<1e-3). Day 2 vs. day
0: 3,205 DEGs and 10,262 non-DEGs with mean insulation score standard deviation equal to 2.83⇥ 10�2 and 2.74⇥ 10�2, respectively.
One-sided t-test P-value = 2.23⇥10�9. Day 30 vs. day 0: 4,308 DEGs and 9,159 non-DEGs with mean insulation score standard deviation
equal to 2.80⇥ 10�2 and 2.74⇥ 10�2, respectively. One-sided t-test P-value = 4.16⇥ 10�6.

23



Higashi — modeling scHi-C data as a hypergraph
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Figure S1: a. The structure of the hypergraph neural network used in Higashi. The input triplet consisting of one cell node and two bin
nodes passes through two branches of the network to generate static embeddings and dynamic embeddings for each node, respectively.
Then the pairwise distances between static and dynamic embedding pairs are calculated. These pairwise distances are combined with
extra features such as genomic distance between the two bins to produce the final predicted score for the input triplet, which represents
the probability of an entry in the single-cell contact map. b. The schematic of the cell-dependent graph neural network in Higashi. During
training and imputation, k nearest neighboring cells in the embedding space are selected. The contact maps of the neighboring cells and
the cell to impute are combined to construct a cell-dependent graph where the nodes are genomic bins. This graph as well as the attributes
of the bin nodes are used as the input of a graph convolutional network.
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Figure S1: a. The structure of the hypergraph neural network used in Higashi. The input triplet consisting of one cell node and two bin
nodes passes through two branches of the network to generate static embeddings and dynamic embeddings for each node, respectively.
Then the pairwise distances between static and dynamic embedding pairs are calculated. These pairwise distances are combined with
extra features such as genomic distance between the two bins to produce the final predicted score for the input triplet, which represents
the probability of an entry in the single-cell contact map. b. The schematic of the cell-dependent graph neural network in Higashi. During
training and imputation, k nearest neighboring cells in the embedding space are selected. The contact maps of the neighboring cells and
the cell to impute are combined to construct a cell-dependent graph where the nodes are genomic bins. This graph as well as the attributes
of the bin nodes are used as the input of a graph convolutional network.
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Cell-dependent GNN

Zhang et al. Nat Biotechnol,  2022 
Zhang et al. ICLR 2020



Higashi separates complex cell types in human prefrontal cortex
 Higashi embeddings separate neuron subtypes using only the 

scHi-C part of sn-m3c-seq (data from Lee et al. Nat Methods 2019) 

 Cell type-specific 3D chromatin structures near marker genes

11
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Figure 4: Higashi identifies complex cell types and cell type-specific TAD-like domain boundaries using scHi-C data from human prefrontal
cortex. a. UMAP visualization of the Higashi embeddings using scHi-C only. b. UMAP visualization of the Higashi embeddings of the
neuron subtypes in (a) [Cell type information is from [28]. Subtypes L2-4, SSt1/2, and Ndnf1/2 are only used in this subfigure.][JM: clarify
that Sst1/2 and Ndnf1/2 are only used in b]. c. Hierarchical clustering based on the average single-cell insulation scores of the flanking
regions (+/- 2Mbp) of the marker gene GAD1 for inhibitory neuron subtypes Sst, Pvalb, Ndnf, and Vip. Note that the single-cell insulation
scores are calculated based on the Higashi imputed contact maps trained using only scHi-C data. d. Pooled imputed contact maps, average
single-cell insulation scores, and methylation profiles of the same region in (c) for selected cell types. The methylation profile is calculated
as the average CG/non-CG methylation percentage of a specific cell type minus the average CG/non-CG methylation percentage of the
whole population. Light purple bar shows a TAD-like domain boundary specific to inhibitory neuron subtypes. e. Top five enriched gene
ontology (GO) terms near ODC-specific TAD-like domain boundaries. f. Pooled imputed contact maps, insulation scores, and methylation
profiles near the gene THBS2, which is in four of the top five most enriched GO terms with ODC-specific high expression. Light purple
bar shows an ODC-specific TAD-like domain boundary. Cell type abbreviations in the legend (consistent with [17]): L2/3, L4, L5 and L6:
excitatory neuron subtypes; Ndnf, Vip, Sst, and Pvalb: inhibitory subtypes; Astro: astrocyte; ODC, oligodendrocyte; OPC, oligodendrocyte
progenitor cell; MG, microglia; NN1, non-neuronal cell type 1; Endo, endothelial cell.
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* stands for using other neurons as background

Higashi — Zhang, Zhou, and Ma. Nature Biotechnology, 2022 
(also Fast Higashi — Zhang et al. Cell Systems 2023)



Mechanisms of genome folding

12

Nature Reviews Genetics

Review artic!e

experimental data, so that contradictory information can be resolved 
in different structures132,133 (Fig.!5b). These methods divide ensemble 
data into individual subsets, each representing a single structure in a 
population. This means that the population of structures as a whole, 
rather than an individual model, is statistically consistent with the 
overall ensemble data. Some methods encode Hi-C data into tailored 
potential-energy functions between pairs of chromatin regions, 
producing an ensemble of structures through molecular dynamics 
or Monte Carlo simulations. This helps to reproduce experimental 
Hi-C contact probabilities, while also capturing their cell-to-cell 
variability113,148,149. However, the computing demand could become 
intractable with increasing complexity of the underlying structures. 
This is particularly true for methods that explore the conformational 
landscape by simulating the conformational changes in one genome 

model over time with molecular dynamics simulations, which could 
require prohibitive amounts of sampling for whole-genome models. 
Another approach, called population-based modelling131,150, decon-
volves ensemble data into a large population of single-cell structures 
by finding the optimal allocations of data to all structures in an iterative 
fashion. This is achieved by solving a maximum likelihood estimation 
problem that uses structural information of the models during the 
optimization process. As a result, each individual structure in the popu-
lation is described by a unique scoring function, which expresses only a 
subset of all data and describes the deviation of the model from experi-
mental data. The collective optimization of all scoring functions gener-
ates a population of single-cell genome structures recapitulating all the 
experimental data. As a result, conflicting data is assigned to different 
structural models, which capture the cell-to-cell variability of genome 
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......
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Interaction frequency
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Fig. 4 | Incorporation of mechanisms of genome folding in modelling 
approaches. a, The process of loop extrusion is shown, whereby a cohesin 
molecule attaches to the chromatin fibre and starts extruding it into a loop; 
the process stops when cohesin falls off or encounters another cohesin or a 
bound CTCF protein. Loading and unloading factors facilitate the process. Loop 
extrusion accounts for both loops and topologically associating domains (TADs) 
observed in Hi-C contact frequency maps. b, The mechanism underlying phase 

separation is shown. Chromatin segments with different affinities (represented 
by different colours) microphase separate within the nucleus owing to attractive 
interactions between regions of the same affinity class, spatial restraints from 
the polymer chain and competition with other interactions. This mechanism 
accounts for chromatin compartmentalization as observed in the characteristic 
Hi-C contact frequency map chequerboard pattern.

Zhang et al. 
Nat Rev Genetics 2024
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Patterns of chromosome spatial segregation based on Hi-C data
 Chromosomes are segregated into A and B 

compartments 
 High-coverage Hi-C in GM12878 identified 

subcompartments by clustering inter-
chromosomal contact maps

13

A B

C

D

Figure 1. We Used In Situ Hi-C to Map over 15 Billion Chromatin Contacts across Nine Cell Types in Human and Mouse, Achieving 1 kb
Resolution in Human Lymphoblastoid Cells
(A) During in situ Hi-C, DNA-DNA proximity ligation is performed in intact nuclei.

(B) Contact matrices from chromosome 14: the whole chromosome, at 500 kb resolution (top); 86–96 Mb/50 kb resolution (middle); 94–95 Mb/5 kb resolution

(bottom). Left: GM12878, primary experiment; Right: biological replicate. The 1D regions corresponding to a contact matrix are indicated in the diagrams above

and at left. The intensity of each pixel represents the normalized number of contacts between a pair of loci. Maximum intensity is indicated in the lower left of each

panel.

(C) We compare our map of chromosome 7 in GM12878 (last column) to earlier Hi-Cmaps: Lieberman-Aiden et al. (2009), Kalhor et al. (2012), and Jin et al. (2013).

(D) Overview of features revealed by our Hi-C maps. Top: the long-range contact pattern of a locus (left) indicates its nuclear neighborhood (right). We detect at

least six subcompartments, each bearing a distinctive pattern of epigenetic features. Middle: squares of enhanced contact frequency along the diagonal (left)

indicate the presence of small domains of condensed chromatin, whose median length is 185 kb (right). Bottom: peaks in the contact map (left) indicate the

presence of loops (right). These loops tend to lie at domain boundaries and bind CTCF in a convergent orientation.

See also Figure S1, Data S1, I–II, and Tables S1 and S2.
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Rao et al. Cell 2014

A E
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Figure 2. The Genome Is Partitioned into Contact Domains that Segregate into Nuclear Subcompartments Corresponding to Different
Patterns of Histone Modifications
(A) We annotate thousands of domains across the genome (left, black highlight). To do so, we define an arrowhead matrix A (right) such that Ai,i+d = (M*i,i-d –

M*i,i+d)/(M*i,i-d + M*i,i+d), where M* is the normalized contact matrix. This transformation replaces domains with an arrowhead-shaped motif pointing toward the

domain’s upper-left corner (example in yellow); we identify these arrowheads using dynamic programming. See Experimental Procedures.

(B) Pearson correlation matrices of the histone mark signal between pairs of loci inside and within 100 kb of a domain. Left: H3K36me3; Right: H3K27me3.

(C) Conserved contact domains on chromosome 3 in GM12878 (left) and IMR90 (right). In GM12878, the highlighted domain (gray) is enriched for H3K27me3 and

depleted for H3K36me3. In IMR90, the situation is reversed. Marks at flanking domains are the same in both: the domain to the left is enriched for H3K36me3 and

the domain to the right is enriched for H3K27me3. The flanking domains have long-range contact patterns that differ from one another and are preserved in both

(legend continued on next page)

1668 Cell 159, 1665–1680, December 18, 2014 ª2014 Elsevier Inc.

Previous work - Guassian HMM to call subcompartments 3

I Rao et al. Cell (2014) further divide compartments into 5 primary
subcompartments based on high-coverage Hi-C in GM12878

I Subcompartments reflect function and spatial localization
I However, Gaussian HMM clustering need high-coverage

inter-chromosomal Hi-C contact map
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Figure 3: SNIPER predictions correlate with various functional genomic data. (A) Reconstruction of the inter-
chromosomal Hi-C contact matrix in IMR90. This example between chromosomes 2 and 3 shows that SNIPER

imputes missing contacts in the sparse matrix, recovers subcompartment-specific contact patterns, and predicts
annotations that correlate with DNA replication timing Repli-seq, H3K27ac ChIP-seq, and RNA-seq (FPKM).
(B) Relative histone mark signal p-value changes at the boundary between A2 (left) and B1 (right) in GM12878,
IMR90, and K562. (C) Subcompartment distribution in K562 SON TSA-seq deciles for SNIPER’s K562 subcom-
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becomes more enriched across the A2-B1 boundary. These patterns of changes in epigenomic signals at
the boundaries of subcompartments are consistent with changes in histone mark signals at subcompart-
ment boundaries shown by Rao et al. (2014) and more recently by Chen et al. (2018), and the average
log ratio between two epigenomic signals shown by Robson et al. (2017). We also observed changes of
histone mark signals around A2 and B1 boundaries in downsampled GM12878, K562, and IMR90 using
subcompartment annotations from Gaussian HMM clustering (Fig. S7). Compared to what we observed
from the predictions based on SNIPER, the patterns of signal changes around A2 and B1 boundaries in
GM12878 and IMR90 based on Gaussian HMM are similar. However, signals in K562 annotated by
Gaussian HMM showed no noticeable difference around A2 and B1 boundaries. This observation sug-
gests that Gaussian HMM may not be appropriate to identify subcompartments with accurate boundaries
for all cell types.

We found that genomic regions replicate much earlier in A1 and A2 subcompartments than in B
subcompartments (Fig. S8A) in GM12878, K562, and IMR90. In addition, it is known that the level
of histone modification of H3K27ac is associated with enhancer activities (Creyghton et al., 2010) and
sometimes also transcriptionally active inter-LADs (van Steensel and Belmont, 2017). We found that
H3K27ac generally has much higher signal in predicted A1 and A2 than in B compartment regions,
and is virtually absent in predicted B2 and B3 regions (see Fig. S8B). Higher H3K27ac signals in B1-
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log ratio between two epigenomic signals shown by Robson et al. (2017). We also observed changes of
histone mark signals around A2 and B1 boundaries in downsampled GM12878, K562, and IMR90 using
subcompartment annotations from Gaussian HMM clustering (Fig. S7). Compared to what we observed
from the predictions based on SNIPER, the patterns of signal changes around A2 and B1 boundaries in
GM12878 and IMR90 based on Gaussian HMM are similar. However, signals in K562 annotated by
Gaussian HMM showed no noticeable difference around A2 and B1 boundaries. This observation sug-
gests that Gaussian HMM may not be appropriate to identify subcompartments with accurate boundaries
for all cell types.

We found that genomic regions replicate much earlier in A1 and A2 subcompartments than in B
subcompartments (Fig. S8A) in GM12878, K562, and IMR90. In addition, it is known that the level
of histone modification of H3K27ac is associated with enhancer activities (Creyghton et al., 2010) and
sometimes also transcriptionally active inter-LADs (van Steensel and Belmont, 2017). We found that
H3K27ac generally has much higher signal in predicted A1 and A2 than in B compartment regions,
and is virtually absent in predicted B2 and B3 regions (see Fig. S8B). Higher H3K27ac signals in B1-
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Addressing sparsity of inter-chromosome interactions

Lieberman-Aiden et al.  
Science 2009

in this way by using principal component analysis.
For all but two chromosomes, the first principal
component (PC) clearly corresponded to the plaid
pattern (positive values defining one set, negative
values the other) (fig. S1). For chromosomes 4 and
5, the first PC corresponded to the two chromo-
some arms, but the second PC corresponded to the
plaid pattern. The entries of the PC vector reflected
the sharp transitions from compartment to com-
partment observed within the plaid heatmaps.
Moreover, the plaid patterns within each chromo-
some were consistent across chromosomes: the

labels (A and B) could be assigned on each
chromosome so that sets on different chromo-
somes carrying the same label had correlated
contact profiles, and those carrying different labels
had anticorrelated contact profiles (Fig. 3D). These
results imply that the entire genome can be par-
titioned into two spatial compartments such that
greater interaction occurswithin each compartment
rather than across compartments.

TheHi-C data imply that regions tend be closer
in space if they belong to the same compartment
(Aversus B) than if they do not. We tested this by

using 3D-FISH to probe four loci (L1, L2, L3, and
L4) on chromosome 14 that alternate between the
two compartments (L1 and L3 in compartment A;
L2 and L4 in compartment B) (Fig. 3, E and F).
3D-FISH showed that L3 tends to be closer to
L1 than to L2, despite the fact that L2 lies be-
tween L1 and L3 in the linear genome sequence
(Fig. 3E). Similarly, we found that L2 is closer to
L4 than to L3 (Fig. 3F). Comparable results were
obtained for four consecutive loci on chromosome
22 (fig. S2, A and B). Taken together, these obser-
vations confirm the spatial compartmentalization

A B C D

E F G H

Fig. 3. The nucleus is segregated into two compartments corresponding
to open and closed chromatin. (A) Map of chromosome 14 at a resolution
of 1 Mb exhibits substructure in the form of an intense diagonal and a
constellation of large blocks (three experiments combined; range from 0
to 200 reads). Tick marks appear every 10 Mb. (B) The observed/expected
matrix shows loci with either more (red) or less (blue) interactions than
would be expected, given their genomic distance (range from 0.2 to 5).
(C) Correlation matrix illustrates the correlation [range from – (blue) to
+1 (red)] between the intrachromosomal interaction profiles of every pair
of 1-Mb loci along chromosome 14. The plaid pattern indicates the
presence of two compartments within the chromosome. (D) Interchromo-
somal correlation map for chromosome 14 and chromosome 20 [range
from –0.25 (blue) to 0.25 (red)]. The unalignable region around the cen-
tromere of chromosome 20 is indicated in gray. Each compartment on
chromosome 14 has a counterpart on chromosome 20 with a very similar

genome-wide interaction pattern. (E and F) We designed probes for four
loci (L1, L2, L3, and L4) that lie consecutively along chromosome 14 but
alternate between the two compartments [L1 and L3 in (compartment A);
L2 and L4 in (compartment B)]. (E) L3 (blue) was consistently closer to L1
(green) than to L2 (red), despite the fact that L2 lies between L1 and L3
in the primary sequence of the genome. This was confirmed visually and
by plotting the cumulative distribution. (F) L2 (green) was consistently
closer to L4 (red) than to L3 (blue). (G) Correlation map of chromosome
14 at a resolution of 100 kb. The PC (eigenvector) correlates with the
distribution of genes and with features of open chromatin. (H) A 31-Mb
window from chromosome 14 is shown; the indicated region (yellow
dashes) alternates between the open and the closed compartments in
GM06990 (top, eigenvector and heatmap) but is predominantly open in
K562 (bottom, eigenvector and heatmap). The change in compartmen-
talization corresponds to a shift in chromatin state (DNAseI).
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SNIPER — inferring Hi-C subcompartments
 Autoencoder compresses sparse inter-

chromosomal Hi-C contacts into 
embeddings and imputes missing 
contacts 

 A classifier then uses embedded inter-
chromosomal Hi-C data to predict 
subcompartments

14

SNIPER is consistent with GM12878 reference annotations 8

I AUPR consistently high across five subcompartments
I Correlation with epigenetic marks is highly similar with SNIPER

predictions and Rao et al. (2014) annotations

Su
bc

om
pa

rtm
en

ts

H3K
4m

e1

H3K
4m

e2

H3K
4m

e3

H3K
9a

c

H3K
9m

e3

H3K
27

ac

H3K
27

me3

H3K
36

me3

H3K
79

me2

H4K
20

me1

G1 S1 S2 S3 S4 G2

A1

A2

B1

B2

B3

GM12878 SNIPER Annotations

2.0 3.0 1.2 2.1 0.7 3.6 0.8 1.1 6.1 1.3 8.4 2.5 0.4 0.1 0.2 1.1

1.7 2.2 1.1 1.5 1.5 2.7 0.8 1.4 3.8 1.0 3.3 2.4 1.7 0.5 0.3 0.8

0.9 0.9 0.9 1.0 0.8 0.8 1.7 0.5 0.9 1.2 1.0 1.4 2.1 1.9 0.6 0.6

0.7 0.6 0.8 0.8 1.5 0.8 0.8 1.1 0.8 0.9 0.4 0.1 0.5 1.9 5.4 3.0

0.7 0.7 1.0 0.8 0.5 0.7 1.1 0.2 0.8 0.9 0.5 0.1 0.6 1.9 4.8 2.1

A1

A2

B1

B2

B3

Rao et al. Annotations

2.0 3.1 1.2 2.2 0.7 3.7 0.9 1.0 6.1 1.3 8.7 2.4 0.4 0.1 0.2 1.2

1.6 2.2 1.1 1.5 1.5 2.6 0.8 1.4 3.5 1.0 3.2 2.3 1.7 0.5 0.3 0.7

0.9 0.9 0.9 1.0 0.7 0.8 1.7 0.4 0.9 1.2 1.0 1.4 2.1 1.9 0.6 0.6

0.7 0.6 0.8 0.8 1.5 0.8 0.8 1.1 0.7 0.9 0.4 0.1 0.4 1.9 5.5 3.2

0.7 0.7 1.0 0.8 0.5 0.7 1.1 0.2 0.8 0.9 0.4 0.1 0.5 1.9 5.1 2.3

0

1

3
Fo

ld
 C

ha
ng

e

A1 (AUPR = 0.981)
A2 (AUPR = 0.974)
B1 (AUPR = 0.939)
B2 (AUPR = 0.957)
B3 (AUPR = 0.974)

SNIPER Precision-Recall

Recall

Pr
ec

is
io

n

0.0

0.2

0.4

0.6

0.8

1.0

1.00.80.60.40.2

Downsample GM12878
Inter-chromosomal Matrix

Compute Contact
Probabilities

Train Denoising
Autoencoder

Latent Variables to
Train Classifier

Subcompartment
Annotations

CBA

25 Epochs

25 Epochs

 

Compute
CE Loss

Backpropagation
U

pdate W
eights

Compare to
Rao et al.

Annotations

Forw
ard Propagation

D
eterm

ine Annotation Probabilities

Latent
Variable

Compare to
dense

ground truth

Forw
ard Propagation

R
econstruct D

ense H
i-C

Backpropagation
U

pdate W
eights

Compute
BCE Loss

Annotation Probabilities

Subcompartment
Annotations

Latent VariableSparse Hi-C probabilities

Dense Hi-C probabilities

argmax

A1 A2 B1 B2 B3

Softmax

Figure 1: Overview of SNIPER. (A) Flowchart of SNIPER’s training procedure. (B) SNIPER denoising autoen-
coder. Rows of the low coverage Hi-C probability map are used in the input layer. Weights are optimized using
binary cross-entropy (BCE) loss between the reconstructed and ground truth contact probabilities. (C) SNIPER
neural network classifier is trained using latent variables from (B) as input and optimized using cross-entropy
between predictions and the original annotations based on the high-coverage Hi-C data in Rao et al. (2014).

region into a much lower dimension, and is subsequently input into the classifier that categorizes the
regions into one of five primary subcompartment classes – A1, A2, B1, B2, and B3 (based on GM12878
annotations) (Fig. 1C). Note that although Rao et al. (2014) defined an additional B4 subcompartment,
it is only present and specifically defined in chromosome 19, occupying less than 0.4% of the genome.
We therefore did not train SNIPER to consider B4. We then train a separate autoencoder and classifier to
annotate regions in even-numbered chromosomes. We convert Hi-C contacts into contact probabilities
to mitigate the effects of extreme Hi-C signals (see Methods). By using low dimensional representations
of complex genome-wide chromatin contacts, we can predict subcompartment annotations using a basic
multi-layer perceptron network. A detailed description of SNIPER is provided in the Methods section.

Note that GM12878 has very high Hi-C coverage (approx. 5 billion mapped read pairs genome-
wide with 740 million inter-chromosomal read pairs between the odd-numbered chromosomes and the
even-numbered chromosomes) while other cell types typically have just a few hundred million read pairs
genome wide with less than 100 million inter-chromosomal read pairs. To reflect coverage in other cells
types, we downsampled the GM12878 Hi-C dataset to around 500 million read pairs genome wide by
randomly removing 90% (or 95%) of its original reads, resulting in about 74 million (or 37 million)
inter-chromosomal read pairs between the odd chromosomes and the even chromosomes. The inter-
chromosomal Hi-C matrix from the downsampled GM12878 data is then used to train the autoencoder.
Hi-C data of lower coverage cell lines can then be input into the trained networks to infer their dense
Hi-C matrices and subcompartment annotations.

SNIPER can accurately predict Hi-C subcompartments in GM12878

We first evaluated the performance of SNIPER in inferring subcompartments in GM12878 using down-
sampled Hi-C data because the annotation based on high-coverage Hi-C is readily available from Rao
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scGHOST: Identifying single-cell 3D genome subcompartments

 scHi-C contact maps as graphs 
 Cell embeddings define k-NN cells. Genomic locus 

embeddings lead to subcompartments 
 A unique random sampling procedure that filters 

noise in imputed scHi-C data
15
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represents (embeds) each genomic locus (graph vertex) in single cells as 
a continuous-valued vector and uses unsupervised learning to partition 
single-cell genomes and identify single-cell 3D genome subcompart-
ments (see Fig. 1a for an overview).

The input of scGHOST includes (1) imputed scHi-C contact maps 
of a cell and (2) scHi-C embeddings (for example, via Higashi17). scG-
HOST identifies k-nearest neighbors (kNNs) for each cell based on 
single-cell embeddings. Starting with cell embeddings, scGHOST cal-
culates genomic locus embeddings tailored for downstream clustering 
of single-cell subcompartments. Our framework then proceeds with 
clustering using the newly derived scGHOST embeddings, produc-
ing discrete annotations for each genomic locus in each individual 
cell. These annotations highlight cell-to-cell variability of single-cell 
subcompartments and facilitate cell-type-specific genome structure–
function analysis.

scGHOST comprises four main components. (1) A sampling proce-
dure motivated by node2vec25, which uses second-order random walks 
to sample neighborhoods in graph networks. Our sampling process 
estimates the most reliable genomic interactions in a cell using imputed 
scHi-C contact maps and the contact maps from neighboring cells in 
the embedding space (Fig. 1b), producing a sparse, undirected and 
weighted graph containing only the strongest Hi-C contacts (Fig. 1c). 
(2) A graph node embedding procedure, treating genomic loci as nodes 
in a graph and using neural networks akin to those in word embedding 
frameworks26. This step embeds each genomic locus in scHi-C maps 
and aggregates random walks across multiple cells, connecting spa-
tially proximal loci obscured by noise in scHi-C data. The embeddings 
are used in the subsequent clustering step for annotating single-cell 
subcompartments. (3) A clustering process unique to scHi-C data that 

subcomparments; and (2) bulk subcompartment annotation typically 
requires Hi-C datasets with at least 50 million trans reads3. However, 
nearly all scHi-C datasets lack sufficient coverage to reveal interchro-
mosomal chromatin interactions for facilitating subcompartment 
annotations at a pseudo-bulk level, let alone at the single-cell level. 
These issues underscore the need for new methods to annotate 3D 
genome subcompartments from scHi-C data.

Here we introduce scGHOST (single-cell graph-based Hi-C 
organization and segmentation toolkit), a computational method for 
genome-wide subcompartment annotation in individual cells using 
scHi-C data. scGHOST leverages data imputed from our recent Higashi 
algorithm17. It employs graph embedding neural networks with a con-
strained random walk sampling strategy for partitioning scHi-C con-
tact maps into subcompartment annotations. By applying scGHOST 
to scHi-C data in several cell lines and single-cell 3D genome imag-
ing data, we demonstrate its ability to reveal single-cell subcompart-
ments, providing insights into the functional implications of chromatin 
spatial localization in individual cells. Moreover, scGHOST uncovers 
cell-type-specific or allele-specific links between subcompartments 
and gene transcription in human prefrontal cortex (PFC), developing 
mouse brains and developing mouse embryos.

Results
Overall design of scGHOST
scGHOST annotates subcompartments in scHi-C datasets and views 
scHi-C contact maps as graphs, where genomic loci are vertices in 
the graph and are connected through edge weights defined by Hi-C 
contact frequencies among loci. scGHOST employs a unique ran-
dom sampling procedure that filters noise in imputed scHi-C data, 
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Fig. 1 | Overview of the scGHOST framework. a, Schematic of the scGHOST 
workflow. b, Higashi embeddings are used to identify cells that exhibit the most 
similarity in the single-cell embedding space. c, Random walks create sparse 
graphs that portray the most crucial connections among genomic loci.  

d, Walks are aggregated and fed into a graph embedding model, which generates 
embeddings for each genomic locus. These embeddings are subsequently 
clustered and compared to derive a final set of single-cell subcompartment 
annotations comparable across chromosomes and cells.
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represents (embeds) each genomic locus (graph vertex) in single cells as 
a continuous-valued vector and uses unsupervised learning to partition 
single-cell genomes and identify single-cell 3D genome subcompart-
ments (see Fig. 1a for an overview).

The input of scGHOST includes (1) imputed scHi-C contact maps 
of a cell and (2) scHi-C embeddings (for example, via Higashi17). scG-
HOST identifies k-nearest neighbors (kNNs) for each cell based on 
single-cell embeddings. Starting with cell embeddings, scGHOST cal-
culates genomic locus embeddings tailored for downstream clustering 
of single-cell subcompartments. Our framework then proceeds with 
clustering using the newly derived scGHOST embeddings, produc-
ing discrete annotations for each genomic locus in each individual 
cell. These annotations highlight cell-to-cell variability of single-cell 
subcompartments and facilitate cell-type-specific genome structure–
function analysis.

scGHOST comprises four main components. (1) A sampling proce-
dure motivated by node2vec25, which uses second-order random walks 
to sample neighborhoods in graph networks. Our sampling process 
estimates the most reliable genomic interactions in a cell using imputed 
scHi-C contact maps and the contact maps from neighboring cells in 
the embedding space (Fig. 1b), producing a sparse, undirected and 
weighted graph containing only the strongest Hi-C contacts (Fig. 1c). 
(2) A graph node embedding procedure, treating genomic loci as nodes 
in a graph and using neural networks akin to those in word embedding 
frameworks26. This step embeds each genomic locus in scHi-C maps 
and aggregates random walks across multiple cells, connecting spa-
tially proximal loci obscured by noise in scHi-C data. The embeddings 
are used in the subsequent clustering step for annotating single-cell 
subcompartments. (3) A clustering process unique to scHi-C data that 

subcomparments; and (2) bulk subcompartment annotation typically 
requires Hi-C datasets with at least 50 million trans reads3. However, 
nearly all scHi-C datasets lack sufficient coverage to reveal interchro-
mosomal chromatin interactions for facilitating subcompartment 
annotations at a pseudo-bulk level, let alone at the single-cell level. 
These issues underscore the need for new methods to annotate 3D 
genome subcompartments from scHi-C data.

Here we introduce scGHOST (single-cell graph-based Hi-C 
organization and segmentation toolkit), a computational method for 
genome-wide subcompartment annotation in individual cells using 
scHi-C data. scGHOST leverages data imputed from our recent Higashi 
algorithm17. It employs graph embedding neural networks with a con-
strained random walk sampling strategy for partitioning scHi-C con-
tact maps into subcompartment annotations. By applying scGHOST 
to scHi-C data in several cell lines and single-cell 3D genome imag-
ing data, we demonstrate its ability to reveal single-cell subcompart-
ments, providing insights into the functional implications of chromatin 
spatial localization in individual cells. Moreover, scGHOST uncovers 
cell-type-specific or allele-specific links between subcompartments 
and gene transcription in human prefrontal cortex (PFC), developing 
mouse brains and developing mouse embryos.

Results
Overall design of scGHOST
scGHOST annotates subcompartments in scHi-C datasets and views 
scHi-C contact maps as graphs, where genomic loci are vertices in 
the graph and are connected through edge weights defined by Hi-C 
contact frequencies among loci. scGHOST employs a unique ran-
dom sampling procedure that filters noise in imputed scHi-C data, 
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workflow. b, Higashi embeddings are used to identify cells that exhibit the most 
similarity in the single-cell embedding space. c, Random walks create sparse 
graphs that portray the most crucial connections among genomic loci.  

d, Walks are aggregated and fed into a graph embedding model, which generates 
embeddings for each genomic locus. These embeddings are subsequently 
clustered and compared to derive a final set of single-cell subcompartment 
annotations comparable across chromosomes and cells.

 Sampling based on both first-order random walks and second-order random walks 
 Graph node embedding using NN

scGHOST: Identifying single-cell 3D genome subcompartments

Xiong #, Zhang #, and Ma. Nature Methods, 2024
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type labels were derived from jointly profiled single-cell methylations, 
independent of chromatin contacts.

First, we evaluated scGHOST’s ability to capture cell-type-specific 
Hi-C contact patterns in the PFC dataset. We used the single-cell 
genome-wide subcompartment annotations from scGHOST as embed-
dings for each cell (termed ‘scGHOST embeddings’). Compared to 
Higashi scA/B compartments, scGHOST enhances the separation of PFC 
cell types. We plotted the uniform manifold approximation and projec-
tion (UMAP) visualization of scGHOST embeddings and Higashi scA/B 
scores across all PFC cells (Fig. 4a). We found that inhibitory neurons 
(Vip, Sst, Pvalb and Ndnf) and excitatory neurons (L2/3, L4, L5 and L6) 
tend to cluster together when using Higashi scA/B, whereas, with the 
scGHOST subcompartments, inhibitory neurons are clearly separated 
from excitatory neurons. Moreover, subcompartment annotations 
within the same cell type show greater similarity than those across 
different cell types (Supplementary Fig. 8), further demonstrating 
scGHOST’s ability in capturing cell-type-specific subcompartments.

Additionally, using a random forest classifier to classify PFC 
cell types, scGHOST achieves accuracy similar to using full Higashi 

embeddings (Supplementary Fig. 9). However, a distinct advantage 
of scGHOST annotations is their direct correspondence to specific 
genome loci. Therefore, applying classifiers that calculate feature 
importance (for example, random forest) to predict cell types using scG-
HOST annotations can highlight genomic loci key to distinguishing cell 
types (see Supplementary Fig. 10 for an example between L2/3 and L4).

To show that more active single-cell subcompartments in the PFC 
dataset contain cell-type-specific marker genes, we assigned scores 
from 0 to 4 to five subcompartments, with lower scores indicating 
more active subcompartments. We analyzed the subcompartment 
scores for the 500 marker genes (see Methods for marker gene iden-
tification) with the highest fold change in each cell type. The scatter 
plots in Fig. 4b depict the average single-cell subcompartment scores 
for the marker genes of specific cell types. Notably, clusters represent-
ing microglia, neurons and oligodendrocytes generally exhibit lower 
scores, suggesting that marker genes specific to each cell type tend to 
locate in more active subcompartments.

Next, we trained a random forest classifier for each cell type to 
distinguish it from the rest of the population. From these models, 
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Fig. 4 | scGHOST’s application to scHi-C data from the Lee et al. human 
PFC and Tan et al. developing mouse brain datasets. a, UMAP visualization 
comparing scGHOST embeddings with Higashi scA/B embeddings in 
differentiating PFC subtypes. b, Average single-cell subcompartment scores of 
marker genes in microglia, neurons and oligodendrocytes. c, Comparison of 
genomic loci with cell-type-specific marker genes in a given PFC cell type and 
those same loci in other cell types. ‘Exc’ denotes all excitatory neurons, whereas 
‘Pvalb’, ‘Vip’ and ‘Sst’ are inhibitory neurons. d, UMAP visualization of the Tan et 
al. developing mouse brain Dip-C dataset, with each dot representing a haploid 

colored by its parent-of-origin genotype. See also Supplementary Fig. 12.  
e, Similarity distributions of subcompartment annotations between two alleles 
across developmental stages. f, Comparison of similarity distributions of 
subcompartment annotations between two alleles and between two haploids 
of the same cell type. g, Overlap heatmaps showcasing regions with known 
imprinted genomic regions and allele-specific subcompartment annotations. 
Astro, astrocyte; Endo, endothelial cell; Exc, excitatory neurons; MG, microglia; 
NN, non-neurons; ODC, oligodendrocyte; OPC, oligodendrocyte progenitor cell.

Data from: Lee et al. Nat Methods 2019
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that accompany embryonic development in 
mice7, flies9 and zebrafish10.

Reading between the lines
Making sense of spatial data requires 
dedicated computational tools. For exam-
ple, researchers might need to deduce which 
cell types are present using data that samples 
only a subset of the transcriptome. Many 
researchers achieve this through parallel 
analysis of single-cell RNA-sequencing data 
collected from the same tissue. “Then you 
can match and align what you’re seeing on 
the spatial data with what you’re seeing in the 
single-cell data,” says Fei Chen. This compar-
ison allows researchers to position cell types 
inferred from RNA sequencing data sets onto 
spatial transcriptomic maps. 

Some algorithms can even work out the 
cellular composition of the relatively large 
pixels produced by platforms such as Visium, 
which can contain multiple cells. Fei Chen and 
Harvard-based computational biologist Rafael 
Irizarry developed an open-source algorithm 
called robust cell-type decomposition (RCTD) 
for this separation process, also known as spot 
deconvolution11. RCTD is broadly applicable to 
most array-based methods, Fei Chen says. It 
not only identifies which cells are present at a 
given pixel, but also fleshes out missing details 
about those cells’ gene-expression activity. 
RCTD can be applied to imaging-based 
methods such as MERFISH for segmentation, 
Fei Chen adds — identifying cellular bounda-
ries from gene-expression data derived from 
single-cell RNA sequencing.

Imaging data can also be a powerful asset 
for cellular deconvolution, and most array-
based spatial transcriptomics techniques can 
capture such data in parallel, says Mingyao Li, 

a geneticist and statistician at the University 
of Pennsylvania in Philadelphia. “You can 
zoom in, you can look at the tissue-specific 
features, how many cells there are, what is the 
cell density, and what are the morphological 
features of individual cells,” she says. But tying 
these elements together is a challenging and 
data-intensive task, often requiring sophisti-
cated computational approaches. 

For instance, Lundeberg and colleagues 
published a study12 in which they trained a 
deep-learning algorithm with transcriptomic 
and histological data from a Visium instru-
ment to extrapolate details well outside the 
contents of individual spots. “We could predict 
very accurately the gene expression between 
spots,” he says, referring to the physical gaps 
that are inherent to every array-based method. 
“We could actually infer the single-cell 
resolution from that.”

Identifying cell types is just the beginning, 
however. Different cell types might have 
strikingly distinct phenotypes depending on 
where they are located in a tissue, and these 
patterns of differential gene expression can 
make a spatial cellular atlas much more pow-
erful. Machine-learning algorithms are useful 
for teasing out this variability, too. For exam-
ple, Amit and colleagues developed a tool 
called DestVI that both resolves which cells 
are located at each array spot and captures dis-
tinctive biological states in various cell types13. 
Using it, the team identified immune-cell phe-
notypes in cancerous tissues. “One can get to 
a much higher-level understanding of the 
physiology or pathology in a tissue,” says Amit.

Bringing it all together
Perhaps surprisingly for a field that produces 
so much data, what spatial transcriptomics 

researchers need now are more data. Initi-
atives such as the Human Cell Atlas, which 
has released transcriptomic data col-
lected from millions of cells from 33 organs 
(www.humancellatlas.org), are particularly 
valuable. Such high-quality, standardized data 
could be used to train analytical algorithms, 
for example. 

Spatial transcriptomics has yet to reach the 
level of collaboration and data-sharing seen in 
more established fields such as genomics or 
single-cell transcriptomics, and this can be a 
source of frustration. In many cases, Fei Chen 
says, laboratories will share only the minimum 
required by publishers and funders — the raw, 
unprocessed data from an experiment — mean-
ing it could take months to reproduce the work. 
But there have been promising developments. 
Following the publication of its Stereo-seq 
work, for instance, the BGI Group launched the 
Spatio Temporal Omics Consortium, which 
has already drawn more than 80 researchers 
from around the world. Its goal is to use various 
spatial methods to tackle tough questions in 
areas related to human physiology, pathogen-
esis and evolutionary biology.

In the meantime, researchers are looking 
to further enhance the technology. For exam-
ple, Lundeberg’s team is using spatial tran-
scriptomics to infer genomic changes that 
occur during prostate tumour development 
— insights that would normally be accessible 
only from genome sequencing of isolated 
cells. “Within a single tissue section, you see 
these extremely early events that no one has 
looked for,” he says, adding that many of these 
changes are occurring in cells that otherwise 
seem benign. 

As for Yanai, he’s enthusiastic about the 
opportunity to eavesdrop on how adjacent cells 
communicate with and influence one another. 
Such crosstalk is an essential component of 
normal organ formation and development, 
and could help to reveal the organizational 
principles of tumour tissue. “The cancer cells 
are manipulating the non-cancer cells,” says 
Yanai. Spatial transcriptomics could capture 
that manipulation as it happens. “It’s like this 
missing piece of the puzzle,” he says. 

Michael Eisenstein is a freelance writer in 
Philadelphia, Pennsylvania.
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MERFISH imaging of part of the human brain, showing cell types labelled with various colours 
(top) and labelled RNA molecules from different genes in individual cells (bottom). 
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Spatial transcriptomics technologies reveal where 
in a tissue each gene is expressed
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 Imaging-based — single-cell resolution 
• STARmap / STARmap PLUS 

Wang et al. Science 2018 / Zeng et al. Nat Neurosci 2023 
• seqFISH+ 

Eng et al. Nature 2019 
• MERFISH / Vizgen MERSCOPE 

Moffitt et al. Science 2018 

 Sequencing-based — full transcriptome 
• Visium 

Stahl et al. Science 2016 
• Slide-seq / Slide-seq V2 

Rodriques et al. Science 2019 / Stickels et al. Nat Biotech 2021 
• Stereo-seq 

Chen et al. Cell 2022 

 Challenge: Lack of computational methods that integrate both gene expression and spatial 
factors to model cell identity

10X Visium
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Three-dimensional intact-tissue
sequencing of single-cell
transcriptional states
Xiao Wang*, William E. Allen*, Matthew A. Wright, Emily L. Sylwestrak,
Nikolay Samusik, Sam Vesuna, Kathryn Evans, Cindy Liu, Charu Ramakrishnan,
Jia Liu, Garry P. Nolan†, Felice-Alessio Bava†, Karl Deisseroth†

INTRODUCTION: Single-cell RNA sequencing
has demonstrated that both stable cell types
and transient cell states can be discovered and
defined by transcriptomes. In situ transcrip-
tomic methods can map both RNA quantity
and position; however, it remains challenging
to simultaneously satisfy key technological re-
quirements such as efficiency, signal intensity,
accuracy, scalability to large gene numbers, and
applicability to three-dimensional (3D) volumes.
Well-established single-molecule fluorescence
in situ hybridization (FISH) approaches (such
as MERFISH and seqFISH) have high detection
efficiency but require long RNA species (more
than 1000 nucelotides) and yield lower intensity
than that of enzymatic amplification methods
(tens versus thousands of fluorophores per RNA

molecule). Other pioneering in situ sequencing
methods (via padlock probes and fluorescent
in situ sequencing) use enzymatic amplification,
thus achieving high intensity but with room
to improve on efficiency.

RATIONALE:We have developed, validated,
and applied STARmap (spatially-resolved tran-
script amplicon readout mapping). STARmap
begins with labeling of cellular RNAs by pairs
of DNA probes followed by enzymatic amplifica-
tion so as to produce a DNA nanoball (amplicon),
which eliminates background caused by mis-
labeling of single probes. Tissue can then be
transformed into a 3D hydrogel DNA chip by
anchoring DNA amplicons via an in situ–
synthesized polymer network and removing

proteins and lipids. This form of hydrogel-
tissue chemistry replots amplicons onto an op-
tically transparent hydrogel coordinate system;
then, to identify and quantify RNA species-
abundance manifested by DNA amplicons, the
identity of each species is encoded as a five-base
barcode and read out by means of an in situ
sequencingmethod that decodes DNA sequence
in multicolor fluorescence. Using a new two-base
sequencing scheme (SEDAL), STARmap was
found to simultaneously detect more than 1000
genes over six imaging cycles, in which sequenc-
ing errors in any cycle cause misdecoding and
are effectively rejected.

RESULTS:We began by (i) detecting and quan-
tifying a focused 160-gene set (including cell
typemarkers and activity-regulated genes) simul-
taneously in mouse primary visual cortex; (ii)

clustering resulting per-cell
gene expression patterns
into a dozen distinct inhib-
itory, excitatory, and non-
neuronal cell types; and
(iii) mapping the spatial
distribution of all of these

cell types across layers of cortex. For validation,
per-cell-type gene expression was found to cor-
relate well both with in situ hybridization re-
sults and with single-cell RNA sequencing, and
widespread up-regulation of activity-regulated
genes was observed in response to visual stim-
ulation. We next applied STARmap to a higher
cognitive area (the medial prefrontal cortex) and
discovered a more complex distribution of cell
types. Last, we extended STARmap tomuch larger
numbers of genes and spatial scales; we mea-
sured 1020 genes simultaneously in sections—
obtaining results concordant with the 160-gene
set—and measured 28 genes across millimeter-
scale volumes encompassing ~30,000 cells, re-
vealing 3D patterning principles that jointly
characterize a broad and diverse spectrum of
cell types.

CONCLUSION: STARmap combines hydrogel-
tissue chemistry and in situ DNA sequencing
to achieve intact-tissue single-cell measurement
of expression of more than a thousand genes.
In the future, combining this intact-system gene
expression measurement with complementary
cellular-resolution methodologies (with which
STARmap is designed to be compatible)—
including in vivo activity recording, optogenetic
causal tests, and anatomical connectivity in the
same cells—will help bridge molecular, cellular,
and circuit scales of neuroscience.▪
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SPICEMIX enables integrative single-
cell spatial modeling of cell identity

20

Chidester B#, Zhou T#, Alam S, and Ma J. Nature Genetics, 2023

Tianming Zhou
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SPICEMIX — NMF + HMRF
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metagene = spatially variable features

latent embedding/representation

Nature Genetics
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other recent methods (such as SpaGCN19). A regularizing parameter 
allows users to control the weight given to the spatial information 
during optimization to suit the input data. The detailed description of 
the NMF-HMRF model is provided in Methods with additional details 
of optimization in Supplementary Note.

Evaluation using simulated spatial transcriptome data
We first evaluated SPICEMIX using simulations that model the mouse 
cortex, a featured region for many spatial transcriptomic studies  
(Fig. 2a,b and Methods (for the simulation method details)). We devised 
two methods of generating expression based on the position and type of 
each cell: approach I follows a metagene-based simulation; approach II 
uses scDesign2 (ref. 32) trained on real scRNA-seq data33. For approach II,  
we introduced two forms of spatial noise: leakage, which randomly 
swaps some reads of neighboring cells, to mimic challenges of process-
ing real spatial transcriptomics data; and additive noise that follows 
random, spatially smooth patterns. We compared the results from 
SPICEMIX to that of NMF, HMRF, Seurat34 and the recent SpaGCN19. 
We evaluated different methods by comparing the inferred cell types 
with the true cell types using the adjusted Rand index (ARI) metric. 
For SPICEMIX and NMF, we subsequently applied Louvain clustering to 
the learned latent representations. The approaches for preprocessing 
the data and for choosing other hyperparameters for each method are 
provided in Supplementary Note.

For both simulation approaches, we found that SPICEMIX consist-
ently outperformed other methods (Fig. 2c–e). For approach I, SPICEMIX 
achieved the highest average ARI scores (0.65–0.82) across scenarios. 
For lower noise settings (σy = 0.2), the ARI of SPICEMIX was 9–18% higher 
than that of SpaGCN or NMF (Fig. 2d). SPICEMIX, SpaGCN, and NMF all 
outperformed Seurat and HMRF. For the higher noise setting (σy = 0.3), 
SPICEMIX clearly outperformed all methods (Fig. 2d). We found that 
SPICEMIX was able to recover both the layer-specific and sparse 
metagenes that underlie the identity of cells. For example, SPICEMIX 
successfully recovered metagene 7, which is specific to layer L1 (Fig. 2c)  
and is enriched in eL1 excitatory neurons (blue in Fig. 2a). Notably, 
SPICEMIX was able to reveal nearly all excitatory neurons (Fig. 2e). 
SPICEMIX also recovered metagene 6 (Fig. 2c), which captures intrinsic 
factors of the sparse inhibitory neuron subtype i1 (red in Fig. 2a). In con-
trast, the equivalent of metagene 7 for NMF is strongly expressed across 
layers L1–L3 (Fig. 2c), and NMF confused some eL3 excitatory neurons 
(light green) with eL1 excitatory neurons (Fig. 2e). The equivalent of 
metagene 6 for NMF shows a more diffuse pattern (Fig. 2c). Additional 
evaluation by varying the parameter λx or zero thresholding to reflect 
different sparsity of the latent variables of NMF further demonstrated 

datasets of brain regions in human and mouse acquired by seqFISH+9, 
STARmap10, and Visium31 demonstrate, on both imaging-based and 
spatial-barcoding-based sequencing technologies, that the enhanced 
SPICEMIX model of cell identity can uncover complex spatially variable 
metagenes and unveil important biological processes.

Results
Overview of SPICEMIX
SPICEMIX models spatial transcriptome data by a probabilistic graphi-
cal model, which we call NMF-HMRF (Fig. 1 and Methods). Our model 
has a natural interpretation for single-cell spatial transcriptome data, 
where each node in the graph represents a cell and edges capture 
nearby cell-to-cell relationships, but it can also be applied to in situ 
sequencing-based methods (for example, Visium7), where each node 
represents a spatially barcoded spot that consists of potentially  
multiple cells.

For each node i in the graphical model, a latent state vector xi 
represents the mixture of weights for K different intrinsic or extrinsic 
factors of cell identity (Fig. 1). To capture the continuous nature of cell 
state, our model extends the standard HMRF by allowing these latent 
states to be continuous. Importantly, different types of correlations 
of latent states in nearby cells are captured by the matrix Σ−1

x

, that, 
unlike a conventional HMRF and many other spatial models, does not 
exclusively assume smooth spatial patterns but instead has the flexibil-
ity to represent both the smooth and sparse spatial patterns that com-
pose real tissue. Each element of the K × K matrix Σ−1

x

 represents the 
pairwise affinity between two factors, providing an intuitive interpreta-
tion of the spatial patterns of cells in tissue. For each factor, a ‘metagene’ 
in the G × K matrix M captures the expression of its associated genes, 
where G denotes the number of genes. The observed expression from 
spatial transcriptome data, yi = Mxi for node i, follows a robust linear 
mixing model, which gives an intuitive interpretation of the relation-
ship of gene expression to the different latent factors representing cell 
identities and critical genes. Thus, the NMF-HMRF model in SPICEMIX 
is able to uniquely integrate the spatial modeling of the HMRF with the 
NMF formulation for gene expression into a single model for spatial 
transcriptome data.

Given an input spatial transcriptome dataset, SPICEMIX simultane-
ously learns the intuitive metagenes M of latent factors, the latent states 
X for all nodes, and their spatial affinity Σ−1

x

. This is achieved by our 
alternating maximum a posteriori (MAP) optimization algorithm. 
Importantly, in SPICEMIX, metagenes are an integral part of the model 
outcome, which presents a methodological advance in comparison to 
the calculation of spatially variable genes as a post-processing step in 
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Fig. 1 | Overview of SPICEMIX. Gene expression measurements and a neighbor 
graph are extracted from spatial transcriptome data and fed into the SPICEMIX 
framework. SPICEMIX decomposes the expression yi in cell (or spot) i into a 
mixture of metagenes weighted by the hidden state xi. Spatial interaction 
between neighboring cells (or spots) i and j is modeled by an inner product of 

their hidden states, weighted by Σ−1

x

, the inferred spatial affinities between 
metagenes. The hidden mixture weights X, the metagene spatial affinity Σ−1

x

, and 
K metagenes M, all inferred by SPICEMIX, provide unique insight into the spatially 
variable features that collectively constitute the identity of each cell.
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other recent methods (such as SpaGCN19). A regularizing parameter 
allows users to control the weight given to the spatial information 
during optimization to suit the input data. The detailed description of 
the NMF-HMRF model is provided in Methods with additional details 
of optimization in Supplementary Note.

Evaluation using simulated spatial transcriptome data
We first evaluated SPICEMIX using simulations that model the mouse 
cortex, a featured region for many spatial transcriptomic studies  
(Fig. 2a,b and Methods (for the simulation method details)). We devised 
two methods of generating expression based on the position and type of 
each cell: approach I follows a metagene-based simulation; approach II 
uses scDesign2 (ref. 32) trained on real scRNA-seq data33. For approach II,  
we introduced two forms of spatial noise: leakage, which randomly 
swaps some reads of neighboring cells, to mimic challenges of process-
ing real spatial transcriptomics data; and additive noise that follows 
random, spatially smooth patterns. We compared the results from 
SPICEMIX to that of NMF, HMRF, Seurat34 and the recent SpaGCN19. 
We evaluated different methods by comparing the inferred cell types 
with the true cell types using the adjusted Rand index (ARI) metric. 
For SPICEMIX and NMF, we subsequently applied Louvain clustering to 
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SPICEMIX clearly outperformed all methods (Fig. 2d). We found that 
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metagenes that underlie the identity of cells. For example, SPICEMIX 
successfully recovered metagene 7, which is specific to layer L1 (Fig. 2c)  
and is enriched in eL1 excitatory neurons (blue in Fig. 2a). Notably, 
SPICEMIX was able to reveal nearly all excitatory neurons (Fig. 2e). 
SPICEMIX also recovered metagene 6 (Fig. 2c), which captures intrinsic 
factors of the sparse inhibitory neuron subtype i1 (red in Fig. 2a). In con-
trast, the equivalent of metagene 7 for NMF is strongly expressed across 
layers L1–L3 (Fig. 2c), and NMF confused some eL3 excitatory neurons 
(light green) with eL1 excitatory neurons (Fig. 2e). The equivalent of 
metagene 6 for NMF shows a more diffuse pattern (Fig. 2c). Additional 
evaluation by varying the parameter λx or zero thresholding to reflect 
different sparsity of the latent variables of NMF further demonstrated 

datasets of brain regions in human and mouse acquired by seqFISH+9, 
STARmap10, and Visium31 demonstrate, on both imaging-based and 
spatial-barcoding-based sequencing technologies, that the enhanced 
SPICEMIX model of cell identity can uncover complex spatially variable 
metagenes and unveil important biological processes.

Results
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where each node in the graph represents a cell and edges capture 
nearby cell-to-cell relationships, but it can also be applied to in situ 
sequencing-based methods (for example, Visium7), where each node 
represents a spatially barcoded spot that consists of potentially  
multiple cells.

For each node i in the graphical model, a latent state vector xi 
represents the mixture of weights for K different intrinsic or extrinsic 
factors of cell identity (Fig. 1). To capture the continuous nature of cell 
state, our model extends the standard HMRF by allowing these latent 
states to be continuous. Importantly, different types of correlations 
of latent states in nearby cells are captured by the matrix Σ−1

x

, that, 
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transcriptome data.
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ously learns the intuitive metagenes M of latent factors, the latent states 
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. This is achieved by our 
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Importantly, in SPICEMIX, metagenes are an integral part of the model 
outcome, which presents a methodological advance in comparison to 
the calculation of spatially variable genes as a post-processing step in 

SPICEMIX: NMF-HMRF
probabilistic graphical model OutputSpatial transcriptomics data

(for example, seqFISH+, STARmap, Visium)

Construct cell–cell
graph

Expression
matrix

Observation potential

Hidden states (xi)

Observation (yi)Single cell

RNA readout

Spatial
coordinate

1 2

3

4
5

6

7
9

10

11

13

12

16

18

19

158

Spatial potential

G
ene IDs

Cell IDs
Gene IDs= ×

Cell-type
composition (X)

NMF

HMRF

Φ(xi , xj)

xi
TΣx

–1xj

φ(xi , yi)
Metagenes (M)

Metagenes
spatial a"inity (Σx

–1)

RepellentAttractive

1 23 i

i

j

N

M1

M1

M2

M3

M2

M3Y M X

Fig. 1 | Overview of SPICEMIX. Gene expression measurements and a neighbor 
graph are extracted from spatial transcriptome data and fed into the SPICEMIX 
framework. SPICEMIX decomposes the expression yi in cell (or spot) i into a 
mixture of metagenes weighted by the hidden state xi. Spatial interaction 
between neighboring cells (or spots) i and j is modeled by an inner product of 

their hidden states, weighted by Σ−1

x

, the inferred spatial affinities between 
metagenes. The hidden mixture weights X, the metagene spatial affinity Σ−1

x

, and 
K metagenes M, all inferred by SPICEMIX, provide unique insight into the spatially 
variable features that collectively constitute the identity of each cell.

Nature Genetics

Article https://doi.org/10.1038/s41588-022-01256-z
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random, spatially smooth patterns. We compared the results from 
SPICEMIX to that of NMF, HMRF, Seurat34 and the recent SpaGCN19. 
We evaluated different methods by comparing the inferred cell types 
with the true cell types using the adjusted Rand index (ARI) metric. 
For SPICEMIX and NMF, we subsequently applied Louvain clustering to 
the learned latent representations. The approaches for preprocessing 
the data and for choosing other hyperparameters for each method are 
provided in Supplementary Note.
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For lower noise settings (σy = 0.2), the ARI of SPICEMIX was 9–18% higher 
than that of SpaGCN or NMF (Fig. 2d). SPICEMIX, SpaGCN, and NMF all 
outperformed Seurat and HMRF. For the higher noise setting (σy = 0.3), 
SPICEMIX clearly outperformed all methods (Fig. 2d). We found that 
SPICEMIX was able to recover both the layer-specific and sparse 
metagenes that underlie the identity of cells. For example, SPICEMIX 
successfully recovered metagene 7, which is specific to layer L1 (Fig. 2c)  
and is enriched in eL1 excitatory neurons (blue in Fig. 2a). Notably, 
SPICEMIX was able to reveal nearly all excitatory neurons (Fig. 2e). 
SPICEMIX also recovered metagene 6 (Fig. 2c), which captures intrinsic 
factors of the sparse inhibitory neuron subtype i1 (red in Fig. 2a). In con-
trast, the equivalent of metagene 7 for NMF is strongly expressed across 
layers L1–L3 (Fig. 2c), and NMF confused some eL3 excitatory neurons 
(light green) with eL1 excitatory neurons (Fig. 2e). The equivalent of 
metagene 6 for NMF shows a more diffuse pattern (Fig. 2c). Additional 
evaluation by varying the parameter λx or zero thresholding to reflect 
different sparsity of the latent variables of NMF further demonstrated 

datasets of brain regions in human and mouse acquired by seqFISH+9, 
STARmap10, and Visium31 demonstrate, on both imaging-based and 
spatial-barcoding-based sequencing technologies, that the enhanced 
SPICEMIX model of cell identity can uncover complex spatially variable 
metagenes and unveil important biological processes.

Results
Overview of SPICEMIX
SPICEMIX models spatial transcriptome data by a probabilistic graphi-
cal model, which we call NMF-HMRF (Fig. 1 and Methods). Our model 
has a natural interpretation for single-cell spatial transcriptome data, 
where each node in the graph represents a cell and edges capture 
nearby cell-to-cell relationships, but it can also be applied to in situ 
sequencing-based methods (for example, Visium7), where each node 
represents a spatially barcoded spot that consists of potentially  
multiple cells.

For each node i in the graphical model, a latent state vector xi 
represents the mixture of weights for K different intrinsic or extrinsic 
factors of cell identity (Fig. 1). To capture the continuous nature of cell 
state, our model extends the standard HMRF by allowing these latent 
states to be continuous. Importantly, different types of correlations 
of latent states in nearby cells are captured by the matrix Σ−1

x

, that, 
unlike a conventional HMRF and many other spatial models, does not 
exclusively assume smooth spatial patterns but instead has the flexibil-
ity to represent both the smooth and sparse spatial patterns that com-
pose real tissue. Each element of the K × K matrix Σ−1

x

 represents the 
pairwise affinity between two factors, providing an intuitive interpreta-
tion of the spatial patterns of cells in tissue. For each factor, a ‘metagene’ 
in the G × K matrix M captures the expression of its associated genes, 
where G denotes the number of genes. The observed expression from 
spatial transcriptome data, yi = Mxi for node i, follows a robust linear 
mixing model, which gives an intuitive interpretation of the relation-
ship of gene expression to the different latent factors representing cell 
identities and critical genes. Thus, the NMF-HMRF model in SPICEMIX 
is able to uniquely integrate the spatial modeling of the HMRF with the 
NMF formulation for gene expression into a single model for spatial 
transcriptome data.

Given an input spatial transcriptome dataset, SPICEMIX simultane-
ously learns the intuitive metagenes M of latent factors, the latent states 
X for all nodes, and their spatial affinity Σ−1

x

. This is achieved by our 
alternating maximum a posteriori (MAP) optimization algorithm. 
Importantly, in SPICEMIX, metagenes are an integral part of the model 
outcome, which presents a methodological advance in comparison to 
the calculation of spatially variable genes as a post-processing step in 

SPICEMIX: NMF-HMRF
probabilistic graphical model OutputSpatial transcriptomics data

(for example, seqFISH+, STARmap, Visium)

Construct cell–cell
graph

Expression
matrix

Observation potential

Hidden states (xi)

Observation (yi)Single cell

RNA readout

Spatial
coordinate

1 2

3

4
5

6

7
9

10

11

13

12

16

18

19

158

Spatial potential

G
ene IDs

Cell IDs
Gene IDs= ×

Cell-type
composition (X)

NMF

HMRF

Φ(xi , xj)

xi
TΣx

–1xj

φ(xi , yi)
Metagenes (M)

Metagenes
spatial a"inity (Σx

–1)

RepellentAttractive

1 23 i

i

j

N

M1

M1

M2

M3

M2

M3Y M X

Fig. 1 | Overview of SPICEMIX. Gene expression measurements and a neighbor 
graph are extracted from spatial transcriptome data and fed into the SPICEMIX 
framework. SPICEMIX decomposes the expression yi in cell (or spot) i into a 
mixture of metagenes weighted by the hidden state xi. Spatial interaction 
between neighboring cells (or spots) i and j is modeled by an inner product of 

their hidden states, weighted by Σ−1

x

, the inferred spatial affinities between 
metagenes. The hidden mixture weights X, the metagene spatial affinity Σ−1

x

, and 
K metagenes M, all inferred by SPICEMIX, provide unique insight into the spatially 
variable features that collectively constitute the identity of each cell.

Nature Genetics

Article https://doi.org/10.1038/s41588-022-01256-z

other recent methods (such as SpaGCN19). A regularizing parameter 
allows users to control the weight given to the spatial information 
during optimization to suit the input data. The detailed description of 
the NMF-HMRF model is provided in Methods with additional details 
of optimization in Supplementary Note.

Evaluation using simulated spatial transcriptome data
We first evaluated SPICEMIX using simulations that model the mouse 
cortex, a featured region for many spatial transcriptomic studies  
(Fig. 2a,b and Methods (for the simulation method details)). We devised 
two methods of generating expression based on the position and type of 
each cell: approach I follows a metagene-based simulation; approach II 
uses scDesign2 (ref. 32) trained on real scRNA-seq data33. For approach II,  
we introduced two forms of spatial noise: leakage, which randomly 
swaps some reads of neighboring cells, to mimic challenges of process-
ing real spatial transcriptomics data; and additive noise that follows 
random, spatially smooth patterns. We compared the results from 
SPICEMIX to that of NMF, HMRF, Seurat34 and the recent SpaGCN19. 
We evaluated different methods by comparing the inferred cell types 
with the true cell types using the adjusted Rand index (ARI) metric. 
For SPICEMIX and NMF, we subsequently applied Louvain clustering to 
the learned latent representations. The approaches for preprocessing 
the data and for choosing other hyperparameters for each method are 
provided in Supplementary Note.

For both simulation approaches, we found that SPICEMIX consist-
ently outperformed other methods (Fig. 2c–e). For approach I, SPICEMIX 
achieved the highest average ARI scores (0.65–0.82) across scenarios. 
For lower noise settings (σy = 0.2), the ARI of SPICEMIX was 9–18% higher 
than that of SpaGCN or NMF (Fig. 2d). SPICEMIX, SpaGCN, and NMF all 
outperformed Seurat and HMRF. For the higher noise setting (σy = 0.3), 
SPICEMIX clearly outperformed all methods (Fig. 2d). We found that 
SPICEMIX was able to recover both the layer-specific and sparse 
metagenes that underlie the identity of cells. For example, SPICEMIX 
successfully recovered metagene 7, which is specific to layer L1 (Fig. 2c)  
and is enriched in eL1 excitatory neurons (blue in Fig. 2a). Notably, 
SPICEMIX was able to reveal nearly all excitatory neurons (Fig. 2e). 
SPICEMIX also recovered metagene 6 (Fig. 2c), which captures intrinsic 
factors of the sparse inhibitory neuron subtype i1 (red in Fig. 2a). In con-
trast, the equivalent of metagene 7 for NMF is strongly expressed across 
layers L1–L3 (Fig. 2c), and NMF confused some eL3 excitatory neurons 
(light green) with eL1 excitatory neurons (Fig. 2e). The equivalent of 
metagene 6 for NMF shows a more diffuse pattern (Fig. 2c). Additional 
evaluation by varying the parameter λx or zero thresholding to reflect 
different sparsity of the latent variables of NMF further demonstrated 

datasets of brain regions in human and mouse acquired by seqFISH+9, 
STARmap10, and Visium31 demonstrate, on both imaging-based and 
spatial-barcoding-based sequencing technologies, that the enhanced 
SPICEMIX model of cell identity can uncover complex spatially variable 
metagenes and unveil important biological processes.

Results
Overview of SPICEMIX
SPICEMIX models spatial transcriptome data by a probabilistic graphi-
cal model, which we call NMF-HMRF (Fig. 1 and Methods). Our model 
has a natural interpretation for single-cell spatial transcriptome data, 
where each node in the graph represents a cell and edges capture 
nearby cell-to-cell relationships, but it can also be applied to in situ 
sequencing-based methods (for example, Visium7), where each node 
represents a spatially barcoded spot that consists of potentially  
multiple cells.

For each node i in the graphical model, a latent state vector xi 
represents the mixture of weights for K different intrinsic or extrinsic 
factors of cell identity (Fig. 1). To capture the continuous nature of cell 
state, our model extends the standard HMRF by allowing these latent 
states to be continuous. Importantly, different types of correlations 
of latent states in nearby cells are captured by the matrix Σ−1

x

, that, 
unlike a conventional HMRF and many other spatial models, does not 
exclusively assume smooth spatial patterns but instead has the flexibil-
ity to represent both the smooth and sparse spatial patterns that com-
pose real tissue. Each element of the K × K matrix Σ−1

x

 represents the 
pairwise affinity between two factors, providing an intuitive interpreta-
tion of the spatial patterns of cells in tissue. For each factor, a ‘metagene’ 
in the G × K matrix M captures the expression of its associated genes, 
where G denotes the number of genes. The observed expression from 
spatial transcriptome data, yi = Mxi for node i, follows a robust linear 
mixing model, which gives an intuitive interpretation of the relation-
ship of gene expression to the different latent factors representing cell 
identities and critical genes. Thus, the NMF-HMRF model in SPICEMIX 
is able to uniquely integrate the spatial modeling of the HMRF with the 
NMF formulation for gene expression into a single model for spatial 
transcriptome data.

Given an input spatial transcriptome dataset, SPICEMIX simultane-
ously learns the intuitive metagenes M of latent factors, the latent states 
X for all nodes, and their spatial affinity Σ−1

x

. This is achieved by our 
alternating maximum a posteriori (MAP) optimization algorithm. 
Importantly, in SPICEMIX, metagenes are an integral part of the model 
outcome, which presents a methodological advance in comparison to 
the calculation of spatially variable genes as a post-processing step in 

SPICEMIX: NMF-HMRF
probabilistic graphical model OutputSpatial transcriptomics data

(for example, seqFISH+, STARmap, Visium)

Construct cell–cell
graph

Expression
matrix

Observation potential

Hidden states (xi)

Observation (yi)Single cell

RNA readout

Spatial
coordinate

1 2

3

4
5

6

7
9

10

11

13

12

16

18

19

158

Spatial potential

G
ene IDs

Cell IDs
Gene IDs= ×

Cell-type
composition (X)

NMF

HMRF

Φ(xi , xj)

xi
TΣx

–1xj

φ(xi , yi)
Metagenes (M)

Metagenes
spatial a"inity (Σx

–1)

RepellentAttractive

1 23 i

i

j

N

M1

M1

M2

M3

M2

M3Y M X

Fig. 1 | Overview of SPICEMIX. Gene expression measurements and a neighbor 
graph are extracted from spatial transcriptome data and fed into the SPICEMIX 
framework. SPICEMIX decomposes the expression yi in cell (or spot) i into a 
mixture of metagenes weighted by the hidden state xi. Spatial interaction 
between neighboring cells (or spots) i and j is modeled by an inner product of 

their hidden states, weighted by Σ−1

x

, the inferred spatial affinities between 
metagenes. The hidden mixture weights X, the metagene spatial affinity Σ−1

x

, and 
K metagenes M, all inferred by SPICEMIX, provide unique insight into the spatially 
variable features that collectively constitute the identity of each cell.

Chidester #, Zhou #, Alam, and Ma. Nature Genetics, 2023

matrix 
factorization

spatial 
dependency

regularization

observed 
expression

latent states

positive and negative affinities between metagenes. By normalizing the weights xi of each cell, any
scaling effects, such as cell size, are removed. In this way, the similarity that is measured is purely a
function of the relative proportions of metagenes. This form also affords a straightforward interpretation
for the affinity matrix ⌃�1

x . Lastly, it is more convenient for optimization.
Given an observed dataset, the model can be learned by maximizing the likelihood of the data. By the

Hammersley-Clifford theorem [51], the likelihood of the data for the pairwise HMRF can be formulated
as the product of pairwise dependencies between nodes,

P (Y,X|⇥) =
1

Z(⇥)

Y

(i,j)2E
'(xi, xj)

Y

i2V
�(yi, xi)⇡(xi), (4)

where ⇥ = {�,M} is the set of model parameters and metagenes and Z(⇥) is the normalizing partition
function that ensures P is a proper probability distribution. The potential function ⇡ is added to capture
an exponential prior on the hidden states X ,

�x = 1, ⇡(xi) = exp (��xkxik1) , (5)

with scale parameter 1. We normalize the average of the total normalized expression levels in individual
cells to K correspondingly.

Parameter priors

We introduce a regularization hyperparameter �⌃ on the spatial affinities, which allows the users to
control the importance of the spatial relationships during inference to suit the dataset of interest. As
the parameter decreases, the influence of spatial affinities during inference diminishes and the model
becomes more similar to standard NMF. If we represent �⌃ in the form �⌃ = 1/(2�2

⌃), we can treat it as
a Gaussian prior, with zero mean and �2

⌃ variance, on the elements of the spatial affinity matrix ⌃�1
x ,

P
�
⌃�1

x

�
=

⇣p
⇡/�⌃

⌘�K2

exp
⇣
��⌃

��⌃�1
x

��2

F

⌘
, (6)

where F denotes the Frobenius norm. Note that the matrix ⌃�1
x is forced to be transpose symmetric.

Alternating estimation of hidden states and parameters

To infer the hidden states and model parameters of the NMF-HMRF model in SPICEMIX, we optimize
the data likelihood via coordinate ascent, alternating between optimizing hidden states and model pa-
rameters. This optimization scheme is summarized in Supplementary Note. First, to make inference
tractable, we approximate the joint probability of the hidden states by the pseudo-likelihood [51], which
is the product of conditional probabilities of the hidden state of individual nodes given that of their
neighbors,

P (X|⇥) ⇡
Y

i2V
P (xi|x⌘(i),⇥), (7)

where ⌘(i) is the set of neighbors to node i.
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Application to the STARmap dataset
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 Mouse visual cortex — Data from Wang et al. Science 2018 
 SpiceMix infers rare subtypes and spatially variable metagenes
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Fig. 4 | Metagenes and refined cell types discovered by SPICEMIX from the 
STARmap data of the mouse primary visual cortex10. Note that colors 
throughout the figure of cells and labels correspond to the cell-type assignments 
of SPICEMIX. a, UMAP plots of the latent states of SPICEMIX and the dendrogram 
of the arithmetic average of the expression for each cell type of SPICEMIX (right). 
It is highlighted in a (left) that SPICEMIX delineated eL6 neurons into three 
subtypes enclosed in the green cycle and delineated oligodendrocytes and OPCs 
into three separate subtypes: Oligo-1 (beige), Oligo-2 (blue) and Astro-2/OPC 
(magenta), enclosed within the beige dashed cycle. b, Left: average z-score 
normalized expression of known marker genes within SPICEMIX cell types, along 
with the number of cells belonging to each type (colored bar plot). The colored 
boxes on the top following the name of each marker gene correspond to their 
known associated cell types. Middle: agreement of SPICEMIX cell-type 

assignments with those of the original analysis in ref. 10. Right: average 
expression of inferred metagenes within SPICEMIX cell types. The expression is 
normalized by the standard deviation per metagene. The average proportion of 
metagenes 12 and 13 in oligodendrocyte cell types, which helped delineate 
subtypes, are highlighted by black arrows. c, Top: the inferred pairwise spatial 
affinity of metagenes, or Σ−1

x

. The strong attraction between metagene 5 and 
metagene 7, which helped distinguish excitatory eL6 neurons, is highlighted by 
the black arrow. Bottom: the inferred pairwise spatial affinity of cell types. d, In 
situ map of SPICEMIX cell-type assignments for all cells. Cell type abbreviations 
(following those of ref. 10): HPC: hippocampal excitatory subtype; PVALB: 
inhibitory neurons; Astro-1: astrocyte subtype; Astro-2/OPC: astrocytes and 
oligodendrocyte precursor cells; Oligo-1 and Oligo-2: oligodendrocyte subtypes.
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Fig. 4 | Metagenes and refined cell types discovered by SPICEMIX from the 
STARmap data of the mouse primary visual cortex10. Note that colors 
throughout the figure of cells and labels correspond to the cell-type assignments 
of SPICEMIX. a, UMAP plots of the latent states of SPICEMIX and the dendrogram 
of the arithmetic average of the expression for each cell type of SPICEMIX (right). 
It is highlighted in a (left) that SPICEMIX delineated eL6 neurons into three 
subtypes enclosed in the green cycle and delineated oligodendrocytes and OPCs 
into three separate subtypes: Oligo-1 (beige), Oligo-2 (blue) and Astro-2/OPC 
(magenta), enclosed within the beige dashed cycle. b, Left: average z-score 
normalized expression of known marker genes within SPICEMIX cell types, along 
with the number of cells belonging to each type (colored bar plot). The colored 
boxes on the top following the name of each marker gene correspond to their 
known associated cell types. Middle: agreement of SPICEMIX cell-type 

assignments with those of the original analysis in ref. 10. Right: average 
expression of inferred metagenes within SPICEMIX cell types. The expression is 
normalized by the standard deviation per metagene. The average proportion of 
metagenes 12 and 13 in oligodendrocyte cell types, which helped delineate 
subtypes, are highlighted by black arrows. c, Top: the inferred pairwise spatial 
affinity of metagenes, or Σ−1

x

. The strong attraction between metagene 5 and 
metagene 7, which helped distinguish excitatory eL6 neurons, is highlighted by 
the black arrow. Bottom: the inferred pairwise spatial affinity of cell types. d, In 
situ map of SPICEMIX cell-type assignments for all cells. Cell type abbreviations 
(following those of ref. 10): HPC: hippocampal excitatory subtype; PVALB: 
inhibitory neurons; Astro-1: astrocyte subtype; Astro-2/OPC: astrocytes and 
oligodendrocyte precursor cells; Oligo-1 and Oligo-2: oligodendrocyte subtypes.



SPICEMIX disentangles cell type composition
 Human dorsolateral prefrontal cortex (DLPFC) 
• Data from Maynard et al. Nature Neuroscience, 2021 

 The correspondence between metagenes and layers is not one-to-one 
 SPICEMIX captures the continuous gradient along the layer-axis
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on this dataset: SpaGCN19 and BayesSpace21, which was designed for 
spatial-barcoding methods.

SPICEMIX achieved consistent advantages in identifying the layer 
structures of DLPFC (Fig. 6a), which consisted of six cortical layers 
(layer L1 to layer L6) and white matter. We focused on the four FOVs 
from sample Br8100 for this analysis (Supplementary Note). The clus-
ters from SPICEMIX produced an ARI score between 0.54 and 0.61 
(average 0.575), with consistent advantage over SpaGCN and Bayes-
Space (Fig. 6a). We observed that although SpaGCN and BayesSpace 
could produce layer-like patterns, these layers did not closely match 
the true boundaries (Supplementary Fig. 19 and S20). In contrast, 
SPICEMIX produced contiguous layers for all FOVs and identified clearer 
boundaries (Fig. 6b) and learned metagenes that clearly manifest the 
layer structure of DLPFC (Supplementary Fig. 21 and Supplementary 
Table 1). Using all four FOVs as input did not considerably affect the 
ARI score of SpaGCN (Fig. 6a), and we were unable to run BayesSpace 
effectively on all four FOVs simultaneously. Although layer L4 could 
not be reliably identified by any method, the metagenes a3 and a6 
learned by SPICEMIX showed differential expression among L3, L4 and 
L5 (P < 10−300; highlighted in Fig. 6c).

The interpretability of metagenes from SPICEMIX helped unveil 
spatially variable expression and spatial patterns of cell types of DLPFC. 

We used differentially expressed genes (DEGs) identified from ref. 44 
(Supplementary Note). The high ranks of astrocyte DEGs in metagene 
a1 (Fig. 6d) suggest that it captures astrocyte expression, along with its 
ubiquitous presence in all seven layers (Fig. 6c), consistent with a recent 
work45. Oligodendrocyte DEGs were enriched in metagenes a6 and a7, 
which were primarily in deep layers and the white matter, respectively 
(Fig. 6c-d). This is consistent with the spatial distributions of oligoden-
drocytes46 and suggests a spatial-subtype separation. Moreover, the 
DEGs of excitatory neurons in superficial layers and deep layers were 
enriched in metagenes a3 and a6, respectively, which were present 
mostly in layers L1–L3 and layer L6, accordingly, reflecting the layer-like 
patterns of excitatory neurons (Fig. 6c-d). These findings confirm the 
unique ability of SPICEMIX to unveil spatially variable features and 
cell-type composition.

Delineating finer anatomic structures of the human brain
SPICEMIX was able to identify finer anatomical structures and cell com-
position of the brain based on its learned spatially variable metagenes 
from the DLPFC Visium data31. On the four FOVs from sample Br8100, 
metagenes a4 and a5 captured the gradual gyro-sulcal variability  
(Fig. 6e,f and Supplementary Fig. 22). We found that more than 50% of 
the genes used for SPICEMIX were differentially expressed across the 

DEG group

0

Ra
nk

 d
i!

er
en

ce

−3,000

3,000
Metagene a5Metagene a4

0

100

200

300

400

500

600

700

800

0

25

50

75

100

125

150

175

a1 a2 a3 a4 a5 a6 a7 a8

Metagene

G
ene rank

1

3,000

As
tr

o
Ex

c 
(S

)

C
el

l t
yp

e

O
lig

o
Ex

c 
(D

)

L1

L2

L3

L4

L5

L6

WM

G
ro

un
d-

tr
ut

h 
la

ye
r

0 1Normalized expression

a1 a3 a4 a5 a6a2 a7 a8

Metagene
SPICEMIX annotations

on FOV 151673
L1
L2
L3g
L3s
L5
L6
WM

1 mm

SPICEMIX

BayesSpace
SpaGCN(4)
SpaGCN(1)

151673 151674 151675 151676 Collective

FOV

0.2

0.3

0.4

0.5

0.6

AR
I

fed

cba

Sulcus
Gyru

s

Fig. 6 | Application to the Visium dataset of human dorsolateral prefrontal 
cortex. a, Comparison of the performance of SPICEMIX, BayesSpace and 
SpaGCN on the four FOVs from sample Br8100 of the Visium dataset of the 
human dorsolateral prefrontal cortex31. SPICEMIX and SpaGCN(4) were trained 
on four FOVs simultaneously and evaluated both on single FOVs and on four 
FOVs altogether. BayesSpace and SpaGCN(1) were trained and evaluated only 
on single FOVs. For SpaGCN and BayesSpace, gray dots represent one of n = 10 
runs with different random seeds. Data are presented as mean values and 95% 
confidence intervals. b, The in situ layer assignments of SPICEMIX for FOV 151673. 
The boundaries between ground-truth layers are illustrated by dashed lines. The 
gyrus and sulcus subregions of L3 identified by SPICEMIX are labeled L3g and 
L3s, respectively. WM, white matter. c, The in situ expression of eight metagenes 
from SPICEMIX, normalized by the maximum value per metagene across FOVs. 
Metagenes a3 and a6 collectively distinguish L4 spots (n = 7,952) from L3 (n 
= 28,160) (two-sided t-test P smaller than the smallest representable value) 

and L5 (n = 21,400) (two-sided t-test P = 6 × 10−322; red rectangles). d, The rank 
distribution of known marker genes44 (n = 53, 406, 188 and 67 genes, respectively) 
of 4 cell types in the eight metagenes. ‘Exc (S)’ and ‘Exc (D)’ denote markers of 
excitatory neurons of superficial and deep layers, respectively. For each row, 
metagenes with greater ranks are highlighted by red rectangles (one-sided 
highlighted-versus-rest Mann–Whitney U test P = 2 × 10−21, 10−90, 3 × 10−32, 10−28, 
respectively). e, Kernel-smoothed in situ expressions of metagenes a4 and a5, 
showing their differential expressions (highlighted by arrows) between the gyric 
side (right side) and the sulcal side (upper side). f, The distribution of the rank 
difference of gyro-sulcal DEGs between metagenes a4 and a5. Gyric DEGs have 
greater ranks in a5 than in a4 (two-sided Wilcoxon P = 3 × 10−26, n = 1,836 genes), 
and sulcal DEGs exhibit the opposite trend (two-sided Wilcoxon P = 4 × 10−25, 
n = 1,136 genes). All boxplots show the median, first, and third quartiles, and 
whiskers extend no further than 1.5× interquartile range.

Chidester #, Zhou #, Alam, and Ma. Nature Genetics, 2023



SPICEMIX identifies the gyro-sulcal gradient
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 The sulcal side and gyric side are anatomically different 
 Metagenes a4 and a5 identified the gradient along the 

gyro-sulcal axis, supported by differentially expressed 
genes
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on this dataset: SpaGCN19 and BayesSpace21, which was designed for 
spatial-barcoding methods.

SPICEMIX achieved consistent advantages in identifying the layer 
structures of DLPFC (Fig. 6a), which consisted of six cortical layers 
(layer L1 to layer L6) and white matter. We focused on the four FOVs 
from sample Br8100 for this analysis (Supplementary Note). The clus-
ters from SPICEMIX produced an ARI score between 0.54 and 0.61 
(average 0.575), with consistent advantage over SpaGCN and Bayes-
Space (Fig. 6a). We observed that although SpaGCN and BayesSpace 
could produce layer-like patterns, these layers did not closely match 
the true boundaries (Supplementary Fig. 19 and S20). In contrast, 
SPICEMIX produced contiguous layers for all FOVs and identified clearer 
boundaries (Fig. 6b) and learned metagenes that clearly manifest the 
layer structure of DLPFC (Supplementary Fig. 21 and Supplementary 
Table 1). Using all four FOVs as input did not considerably affect the 
ARI score of SpaGCN (Fig. 6a), and we were unable to run BayesSpace 
effectively on all four FOVs simultaneously. Although layer L4 could 
not be reliably identified by any method, the metagenes a3 and a6 
learned by SPICEMIX showed differential expression among L3, L4 and 
L5 (P < 10−300; highlighted in Fig. 6c).

The interpretability of metagenes from SPICEMIX helped unveil 
spatially variable expression and spatial patterns of cell types of DLPFC. 

We used differentially expressed genes (DEGs) identified from ref. 44 
(Supplementary Note). The high ranks of astrocyte DEGs in metagene 
a1 (Fig. 6d) suggest that it captures astrocyte expression, along with its 
ubiquitous presence in all seven layers (Fig. 6c), consistent with a recent 
work45. Oligodendrocyte DEGs were enriched in metagenes a6 and a7, 
which were primarily in deep layers and the white matter, respectively 
(Fig. 6c-d). This is consistent with the spatial distributions of oligoden-
drocytes46 and suggests a spatial-subtype separation. Moreover, the 
DEGs of excitatory neurons in superficial layers and deep layers were 
enriched in metagenes a3 and a6, respectively, which were present 
mostly in layers L1–L3 and layer L6, accordingly, reflecting the layer-like 
patterns of excitatory neurons (Fig. 6c-d). These findings confirm the 
unique ability of SPICEMIX to unveil spatially variable features and 
cell-type composition.

Delineating finer anatomic structures of the human brain
SPICEMIX was able to identify finer anatomical structures and cell com-
position of the brain based on its learned spatially variable metagenes 
from the DLPFC Visium data31. On the four FOVs from sample Br8100, 
metagenes a4 and a5 captured the gradual gyro-sulcal variability  
(Fig. 6e,f and Supplementary Fig. 22). We found that more than 50% of 
the genes used for SPICEMIX were differentially expressed across the 
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Fig. 6 | Application to the Visium dataset of human dorsolateral prefrontal 
cortex. a, Comparison of the performance of SPICEMIX, BayesSpace and 
SpaGCN on the four FOVs from sample Br8100 of the Visium dataset of the 
human dorsolateral prefrontal cortex31. SPICEMIX and SpaGCN(4) were trained 
on four FOVs simultaneously and evaluated both on single FOVs and on four 
FOVs altogether. BayesSpace and SpaGCN(1) were trained and evaluated only 
on single FOVs. For SpaGCN and BayesSpace, gray dots represent one of n = 10 
runs with different random seeds. Data are presented as mean values and 95% 
confidence intervals. b, The in situ layer assignments of SPICEMIX for FOV 151673. 
The boundaries between ground-truth layers are illustrated by dashed lines. The 
gyrus and sulcus subregions of L3 identified by SPICEMIX are labeled L3g and 
L3s, respectively. WM, white matter. c, The in situ expression of eight metagenes 
from SPICEMIX, normalized by the maximum value per metagene across FOVs. 
Metagenes a3 and a6 collectively distinguish L4 spots (n = 7,952) from L3 (n 
= 28,160) (two-sided t-test P smaller than the smallest representable value) 

and L5 (n = 21,400) (two-sided t-test P = 6 × 10−322; red rectangles). d, The rank 
distribution of known marker genes44 (n = 53, 406, 188 and 67 genes, respectively) 
of 4 cell types in the eight metagenes. ‘Exc (S)’ and ‘Exc (D)’ denote markers of 
excitatory neurons of superficial and deep layers, respectively. For each row, 
metagenes with greater ranks are highlighted by red rectangles (one-sided 
highlighted-versus-rest Mann–Whitney U test P = 2 × 10−21, 10−90, 3 × 10−32, 10−28, 
respectively). e, Kernel-smoothed in situ expressions of metagenes a4 and a5, 
showing their differential expressions (highlighted by arrows) between the gyric 
side (right side) and the sulcal side (upper side). f, The distribution of the rank 
difference of gyro-sulcal DEGs between metagenes a4 and a5. Gyric DEGs have 
greater ranks in a5 than in a4 (two-sided Wilcoxon P = 3 × 10−26, n = 1,836 genes), 
and sulcal DEGs exhibit the opposite trend (two-sided Wilcoxon P = 4 × 10−25, 
n = 1,136 genes). All boxplots show the median, first, and third quartiles, and 
whiskers extend no further than 1.5× interquartile range.



Limitations of analyzing cellular interactions
 We need a method to quantify cell-cell interactions and 

address the following:  
• Cell-cell interactions are specific to cell type/state 
• Cell-cell interactions are specific to spatial domains/context 
• Allowing for in silico spatial perturbation — predicting the effect 

of a changing environment on a cell 

 Cell-cell interactions are inherently multi-scale 

 Current cell-cell interactions databases are incomplete 
• Need de novo approaches to learn from the data
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Armingol et al. Nat Rev Genet 2021



STEAMBOAT: modeling cell-cell interactions
 The molecular profile of cells is a result of 

superimposing: 
• intrinsic factors 
• interactions at multiple scales 

 How do we decompose them and 
model such multiscale interactions?

26

Gene expression & spatial location

Attention-based multiscale 
delineation of cellular 
interactions in tissues

Liang et al. bioRxiv 2025Armingol et al. Nat Rev Genet 2021
Shaoheng Liang



Find words that interact by attention
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Cells in a tissue as words in a sentence
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Cells
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s

Sender
ReceiverMetagenes

Genes

 Metagenes: weighted combination of genes 
that are expressed in a group of cells. 

 Multiscale: different interactions are over 
different distances.

Liang et al. bioRxiv 2025



STEAMBOAT identifies underlying factors in mouse brain
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Astrocytes in isocortex/HPF

Mouse brain MERFISH data from: Zhang et al. Nature, 2023



STEAMBOAT unveils spatial features in colorectal cancer
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Figure 5: STEAMBOAT unveils sample-level features related to colorectal cancer prognosis a. Experi-
mental design for the original data. Patients are grouped into two risk groups based on TLS presence, with four
samples per patient. For CLR patients, two samples are from regions with TLS. b-c. Spatial cell distribution in
a representative DII sample, colored by cell types (b) and neighborhoods (c) as annotated in [57]. d. Center
cell metagene weights of cell type markers (curated from [57]). e. Weight of three scales for all attention heads.
f. Sample-level (global) environment scores in head #8 by CLR/DII classification, stratified by TLS presence.
Shown above are Mann-Whitney U test p-values and common language effect sizes. Genes with highest load-
ings in global environment, center cell, and reconstruction metagenes for head #8. h. Median center cell and
attention scores of cell types and neighborhoods in head #8. i. GATA3 expression in representative CLR sample
(i) and DII (j) samples. Also shown is the neighborhoods in the CLR sample.
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STEAMBOAT enables in silico spatial perturbations

 Knock out Mog in OPC-Oligo. 
 What happens in other cells?

31
Liang et al. bioRxiv 2025

Figure 5: Benchmarks and applications of in silico spatial perturbation prediction. a. Illustration us-
ing Perturb-FISH data. Representative genes are up- or down-regulated in cells (colored by change in gene
expression) near MAP2K2-KO tumor cells (black dots). Red indicates up-regulation; blue indicates down-
regulation. b. Comparison between predicted and ground-truth log-fold changes of genes in T cells following
in silico MAP2K2 knockout in tumor cells. Each dot represents a gene. The numbers in the titles indicate the
Spearman correlation between the predicted and ground truth. c. Spearman correlation between predicted and
ground-truth log-fold change of genes in T cells for 11 tumor gene knockouts (X-axis). d. Transplantation sce-
nario of spatial perturbation in mouse brain. Left: schematic showing transplantation of OPC-Oligo cells from
the isocortex to the HPF. Right: correlation of log-fold changes between graft vs. donor and native vs. donor
comparisons. e. Knockout scenario of spatial perturbation in mouse brain. Top: schematic illustrating knockout
of Mog in OPC-Oligo cells. Bottom: top pathways altered in HY GABA, identified by GSEA. f. Magnitude of
expression changes in non-OPC-Oligo cell types.

11

 Move OPC-Oligo from Isocortex to HPF region. 
 Gene expression of transplanted cells change towards 

native ones.



Steamboat for modeling cell interactions in tissues
 Steamboat is a de novo multi-scale cell-cell interaction model.  

 Many applications: spatial perturbation; characterize samples; spatial domains & cell types 

 The model could serve as the basis for tissue Foundation Model.
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Figure 1: Overview of the STEAMBOAT framework. a. The input to STEAMBOAT consists of gene expres-
sion (or other molecular profiles) of cells and their spatial coordinates. The environment around each cell is
decomposed into three scales: ego (purple), local (blue), and global (green). Arrows represents interactions
at different scales. b. STEAMBOAT optimizes five metagenes: one for the center cell, three for the cells it in-
teracts with at the ego, local, and global scales, and one reconstruction metagene. The model minimizes the
reconstruction error of the center cell. Attention between two cells depends on the center cell’s score q, the
environment score k of the other cell, and the distance between the cells. Attention scores between cells form
a weighted cellular interaction graph, and the total attention score of each cell, summed over the environment,
is used as the cell embedding, which is then used to reconstruct the center cell. c. These embeddings and
interaction graphs enable a variety of downstream tasks, including spatial domain segmentation, cell type clus-
tering, de novo cell-cell interaction discovery, spatial perturbation, and patient survival prediction. Dotted lines
between panels (b) and (c) indicate the specific components of STEAMBOAT used in each application.

patient-level prognostic markers and its unique capability for spatial perturbation analysis, establishing
it as a powerful tool for spatial-omics analysis, particularly in decoding multiscale cellular interactions.

Results

Overview of attention-based multiscale modeling in STEAMBOAT

At the core of STEAMBOAT is its ability to decompose a cell’s molecular profile (e.g., gene expres-
sion) into three contributing spatial scales: ego, local, and global – corresponding to intrinsic gene
programs, the microenvironment, and the macroenvironment, respectively (Fig. 1a). This is achieved
using a uniquely designed multi-scale attention mechanism for spatial-omics data (Fig. 1b).

STEAMBOAT redesignes the attention mechanism [32] to recognize cell-cell interactions, which vary
across cell types and states. To disentangle different interactions, multiple “attention heads” are used.
The term “head” is borrowed from natural language processing, where it originally refers to a submodule
trained to detect specific interactions (i.e., “attention”) between words [32] (see Methods for details).
Each head is parameterized by metagenes, which are weighted combinations of signature genes associ-
ated with cell types or biological functions [33, 34]. Two cells are considered to interact under a given
attention head if one is selected as a center cell and the other as part of the interacting environment.
Mathematically, this selection is performed via an inner product between a cell’s gene expression pro-
file and the metagene, effectively comparing a cell to a learned cell signature and producing center cell
scores and environment scores. (There is no hard threshold to actually select a cell – only real-valued
scores.) We quantify interaction strength using the product of the center cell score and environment
score, referred to as the attention score.

STEAMBOAT dissects attention into three spatial scales: global, local, and ego, each with its own

3
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What is a Foundation Model?
▪ Foundation models are a 

replacement for task-specific 
models 

▪ Large-scale pretraining on 
large unlabeled datasets 

▪ Finetuning for diverse 
downstream tasks  

▪ Self-supervised learning 
▪ Transfer learning 

▪ GPT-4, DALL-E 2, BERT, etc.

33

“On the Opportunities and Risks of Foundation Models” 
Bommasani et al. Stanford CRFM 2022



Application of (large) language models in genomics

▪ Large pretrained models can be utilized for finetuning on downstream tasks with 
limited training data 

▪ Data sparsity problem in biology  
• noisy/sparse data 
• incomplete data in biology, e.g., rare disease, precious samples  

▪ Embeddings with more generalized knowledge can help mitigate batch effects 

▪ A few interesting attempts in several direction: 
• Modeling genomic sequences 
• Modeling single cell gene expression data 
• Modeling protein sequence and structure
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Architecture of LLMs for genomic sequence
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Modeling DNA sequences
 DNABERT 
• Pre-trained BERT for DNA sequences 

based on the human reference genome 
• Overlapping k-mer tokenization 

 More recent methods:  
• NT, HyenaDNA, Caduceus, Evo, …

36
DNABERT input representation 

Ji et al. Bioinformatics 2021 

BERT input representation 



Nucleotide Transformer

▪ Pre-trained BERT for DNA sequences on 
humans, 1000 genomes, and 
multispecies 

▪ Non-overlapping K-mer tokenization 
▪ Context length of 12K bp
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▪ Downstream prediction tasks:  
▪ promoter region, TFBS, splice site, functional 

variants identification

Dalla-Torre et al. Nat Methods 2024



HyenaDNA

▪ Pre-trained next token prediction for DNA sequences using a convolution-
based architecture 

▪ Tokenization: Nucleotide base-pair resolution 
▪ Advantages: Long context modeling (~1M context length) 
▪ Disadvantages: Not quite clear if this convolutional architecture has the 

capacity to match transformers
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L → Sequence Length 
D → Embedding Dimension

Nguyen et al. NeurIPS 2023



Evo
▪ Autoregressive (next-token prediction) 

pretrained on prokaryotic and phage 
genomes 

▪ Striped Hyena architecture: 
combination of 29 hyena layers and 3 
attention layers 

▪ Demonstrates that aspects of protein 
and ncRNA can be evaluated through a 
model trained on DNA sequences

39
Nguyen et al. Science 2024



Importance of benchmark datasets

▪ Motivation: Most previous benchmarks for genomics focus on 
short-range (input lengths < 1000) classification tasks 

▪ DNALongBench: A benchmark suite for long-range DNA 
prediction tasks
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Wenduo Cheng

Lei Li

Zhenqiao Song

Cheng et al. bioRxiv 2024



General structure of single-cell FMs
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Cell Sentence of genes

Expression value 
embedding

Transformer  
(w/ attention)

× n

Trained Gene embedding Cell embedding 

Gene embedding

Sample embedding 

Initial embedding Final embedding

Pooling

Pooling

CD3D

PDCD1

TP
53

- cell-type annotation 
- batch integration 
- perturbation prediction

- gene network 
- gene dosage sensitivity

- patient outcome



Tokenization for cells
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Cell Sentence of genes Transformer  
(w/ attention)

× n

Initial embedding Final embedding

CD3D

PDCD1

TP
53

Gene embeddings ordered by their expression value (Geneformer) 

Gene embeddings + binned expression value embeddings (scGPT, scBERT) 

Gene embeddings + expression value embeddings (scFoundation) 

Gene embedding by protein language model (UCE)



Network structures and training strategies

43

Cell Sentence of genes Transformer  
(w/ attention)

× n

Initial embedding Final embedding

CD3D

PDCD1

TP
53

- Autoregressive pretraining (scGPT) 

- Masked language modeling (MLM) pretraining (scBERT, 
Geneformer, scFoundation) 



Timeline of scFMs
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2022

2023

2024

# Parameters Training 
data size

Highlights Paper

scBERT 5M 1M > Scalability: Performer Yang et al., 
Nat Mach Intell 2022

Geneformer 40M 30M > Gene networks inference Theodoris et al., 
Nature 2023

scGPT 51M 33M > Generative pretraining 
   (cell & gene prompt)

Cui et al., 
Nat Methods 2024

scFoundation 100M 50M > Scalability: reduced input length 
> Integration: confounding factors 
regressed out

Hao et al., 
Nat Methods 2024

UCE 650M  
+15B pLM (fixed)

46M > Cross-species integration: utilizes 
pLM (ESM-2) for gene embedding

Rosen et al., 
bioRxiv 2023

scMulan 368M 10M > Multi-tasking: query by prompts 
> Richer pretraining: metadata

Bian et al., 
RECOMB 2024

NicheFormer 50M 110M > Integration: dissolved & spatial 
assays

Schaar et al., 
bioRxiv 2024



Full scBERT model training scheme

45[Figure] Yang et al. Nature Machine Intelligence 2022



Geneformer
 Geneformer 
• Pretrained on 30 million scRNA-seq to enable context-specific predictions 
• Discretize gene expression through ranking genes according to their expression 
• Encodes network hierarchy in the attention weights of the model  
• In silico perturbation: remove a gene, compare cell and gene embeddings 

 Other recent methods: scGPT, UCE …

46
Theodoris et al. Nature 2023



Leveraging prior knowledge for improved gene embeddings 

Gene embeddings can be trained de novo, but prior knowledge may help: 

▪ Gene2vec  
• Distributed representation based on co-expression (used in scBERT) 

▪ GenePT (Chen and Zou) 
• Use GPT-3.5 to generate gene embeddings from gene description. 

However, because each gene is treated as a separate entity, knowledge about 
one gene is not transferable to another. Also, recognizing similarity of genes 
across species is important for a universal model. 

▪ Universal Cell Embeddings (UCE) 
• Uses protein LLM to embed a sample’s genes with protein products 
• Protein products make genes across species more comparable

47



Promises and challenges

▪ Foundation models for genomes and cells seem to have potentials 

• Pretraining on large number of cells will discover intrinsic interaction of genes 
• Pretrained models are easily adaptable to multiple tasks to enable biological findings 

▪ But biology is complicated and its “language” is likely much harder to model 
than natural languages. 

• Biological data involve many confounding factors 
• Biological questions are often not mathematically well-defined 
• In this data driven era: “what is the best question to ask”

48



Questions
 How to better evaluate LLMs?  
 How to make LLMs more accessible? 
 How to embed cell/gene to better maintain biological contexts? 
 How to incorporate prior knowledge into the neural network? 
 Do we have enough data available to pretrain LLMs or Foundation Models for various 

modalities in genomics? (Are we ever going to?) 
 DNA and single-cell LLMs have comparable performance compared to existing approaches 

– need more challenging problems.  

 What are the important problems for LLMs?
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Interpretable AI/ML in the era of LLMs

50
Chen # and Yang # et al. Nature Methods, 2024



Decoding the “language” of genomes, cells, and tissues
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sequence   —   structure   —   function

Single cell

Spatial coordinates
of tissue

Multiscale Spatial Omics

...

Nucleus
Enhancers Promoters

Genes

Language of 
protein sorting

Language of genome regulatory code 
that enables signaling responses

Cellular foundation model

Biology is multiscale. So must our models be.
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Living cell was first observed 
~350 years ago by  

 
Antonie van Leeuwenhoek 
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