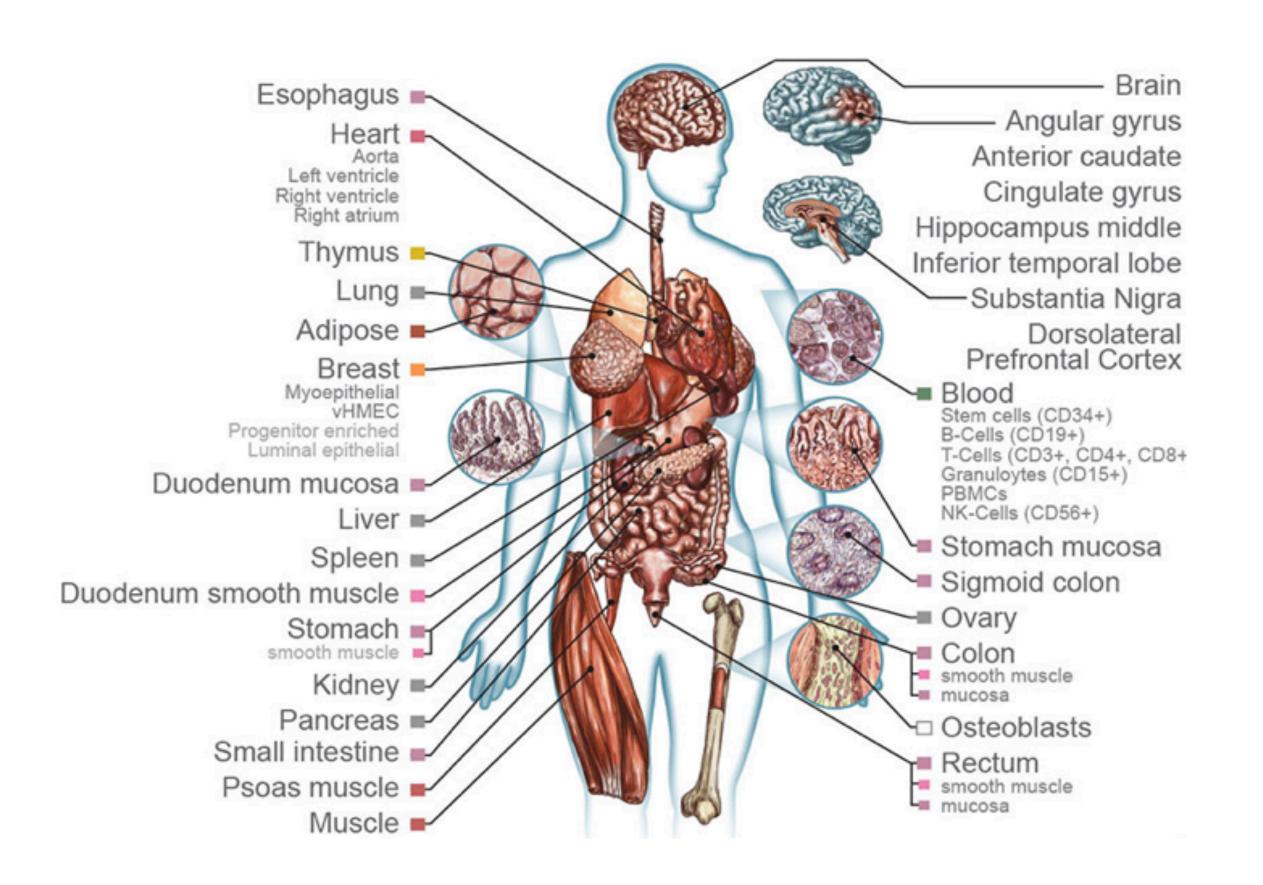
Decoding single-cell spatial genomics and epigenomics with Al/ML

Jian Ma

Ray and Stephanie Lane Professor of Computational Biology
Ray and Stephanie Lane Computational Biology Department
Director, Center for Al-Driven Biomedical Research
School of Computer Science
Carnegie Mellon University

Genome function in different cell types

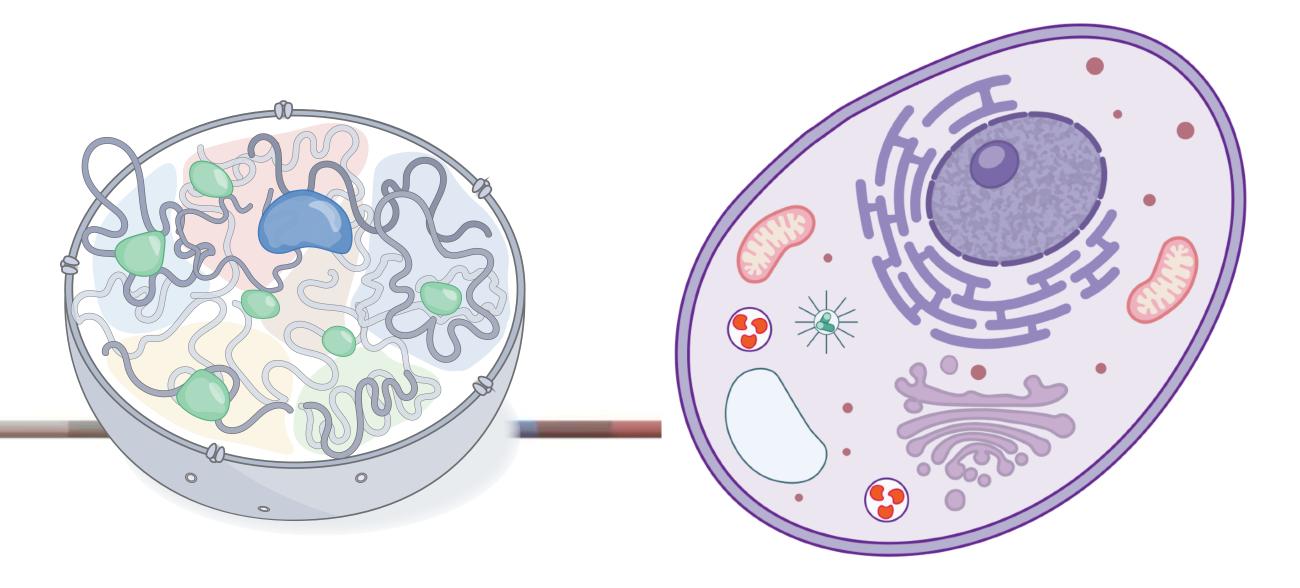


Numerous different cell types with distinct functions in our body

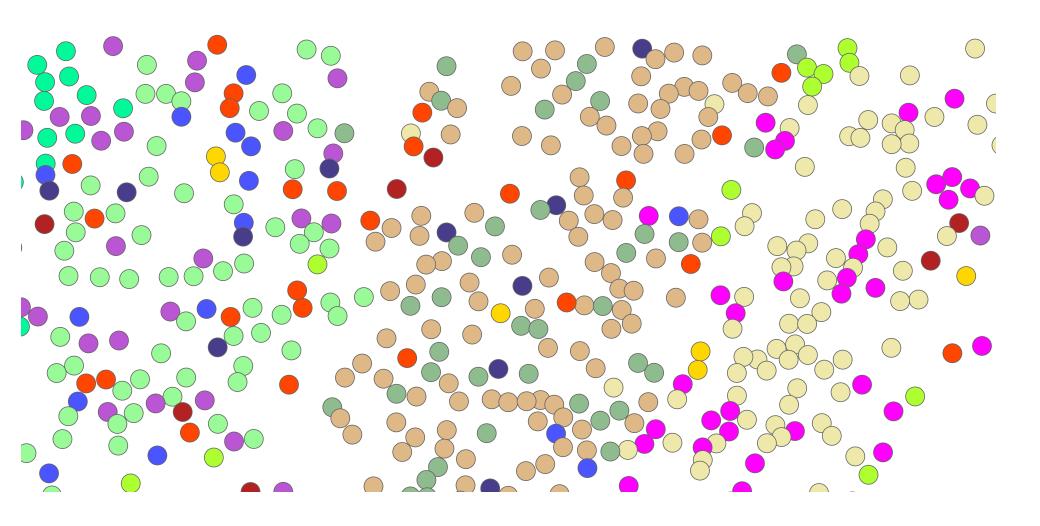
Yao et al. Nature 2023

- Same genome but different gene regulation and epigenome
- Development of single cell technology provides closer look at cell types and cell states

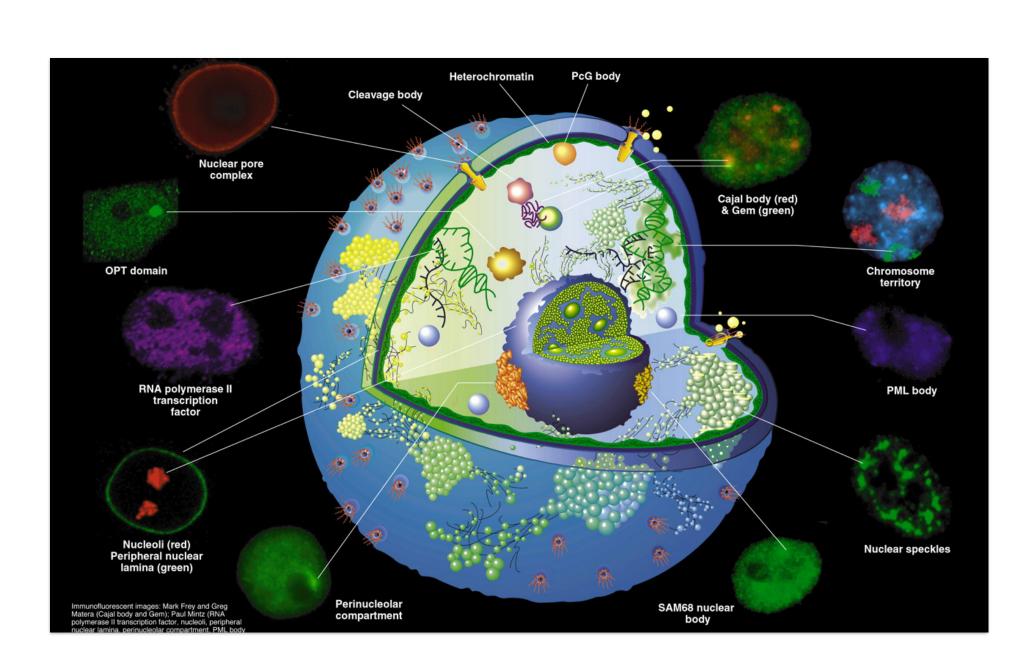
Multiscale cellular structure and function



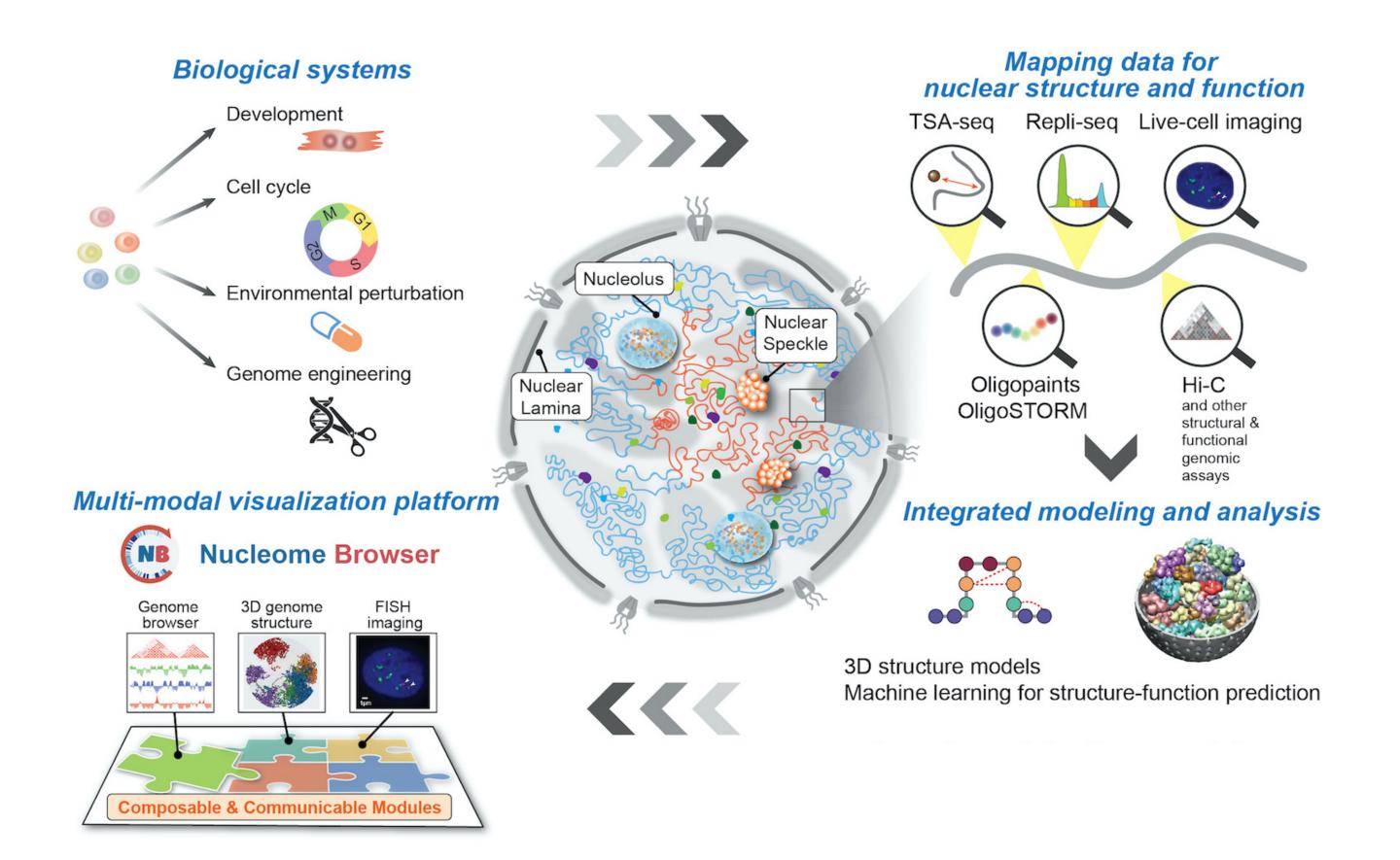
- Single-cell 3D epigenome and gene regulation
- Cellular spatial organization and interaction
- graph / hypergraph neural network, self-supervised, latent embedding, metagene, attention, (foundation model)



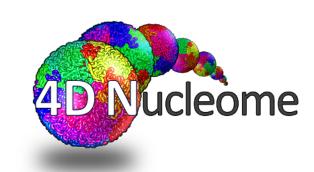
Large-scale genome organization in the nucleus



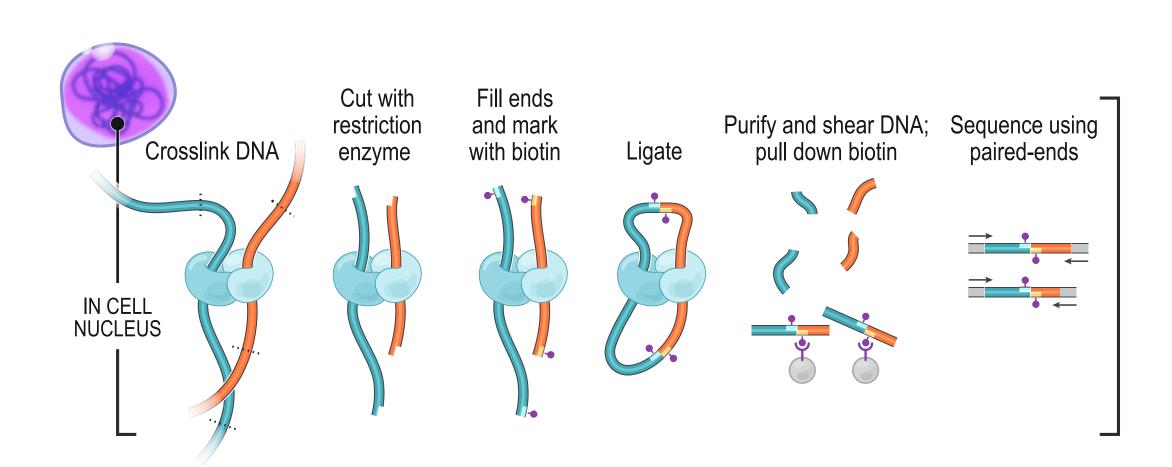
Spector, J of Cell Science 2001



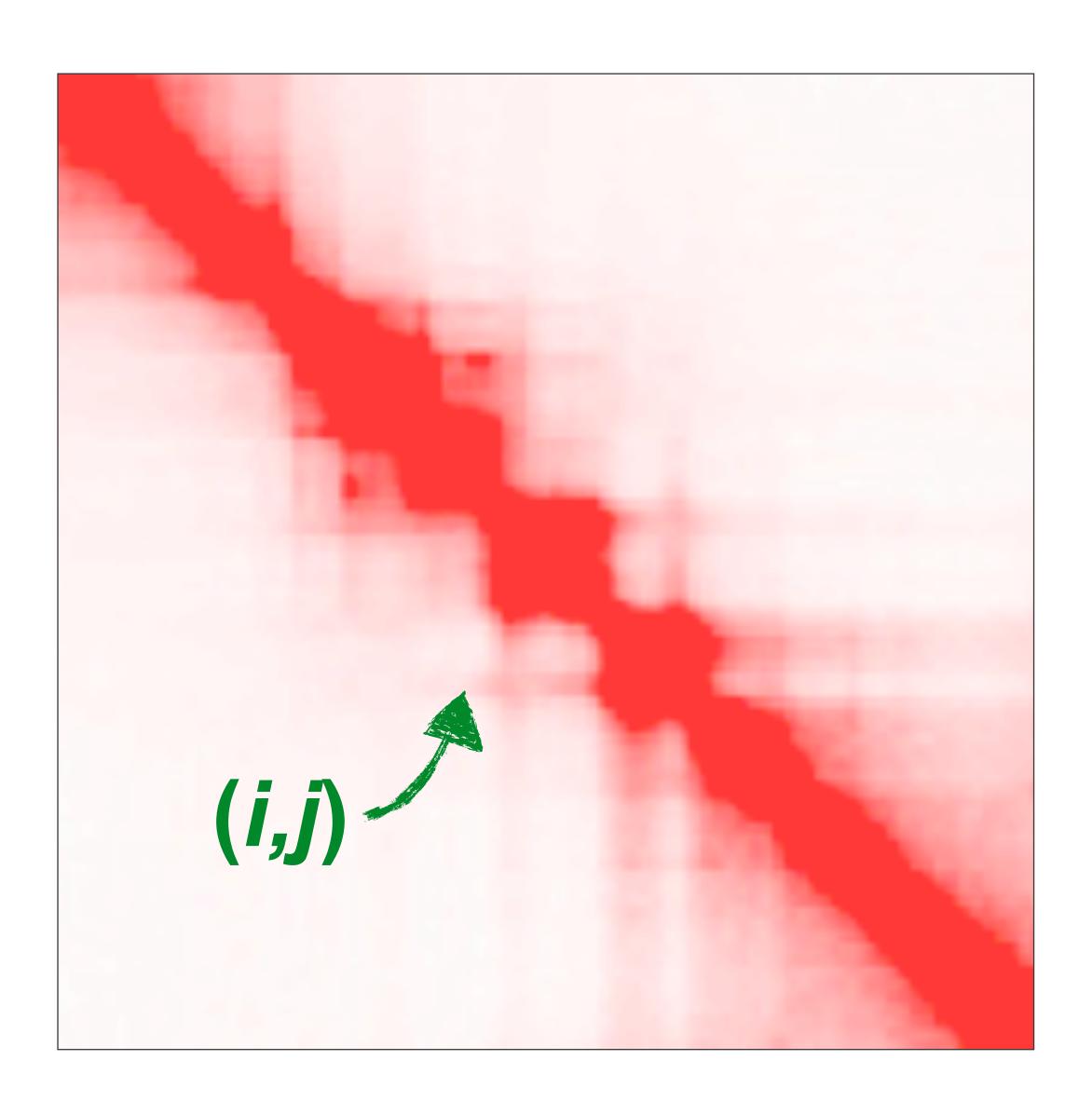
Multiscale Analyses of 4D Nucleome Structure and Function by Comprehensive Multimodal Data Integration



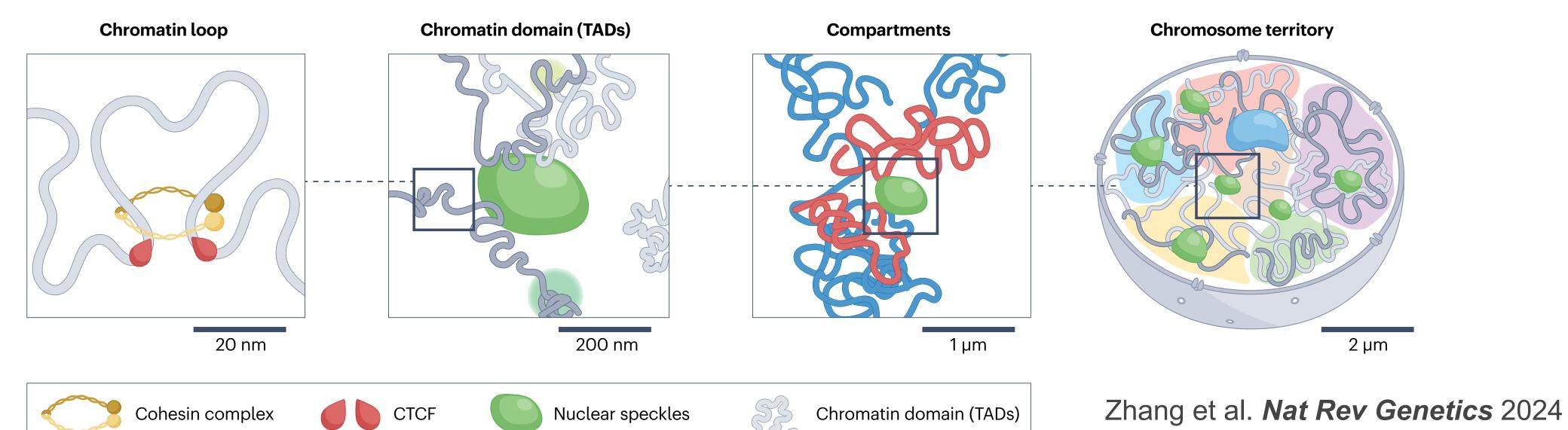
Hi-C contact map



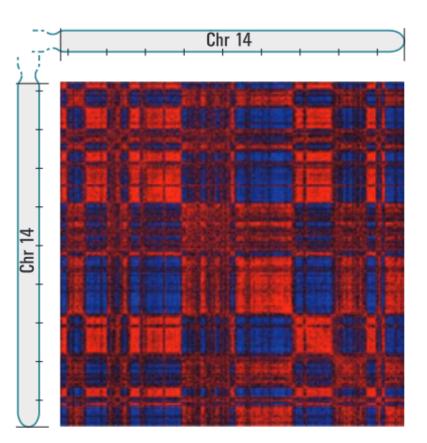
Hi-C



Multiscale 3D genome organization

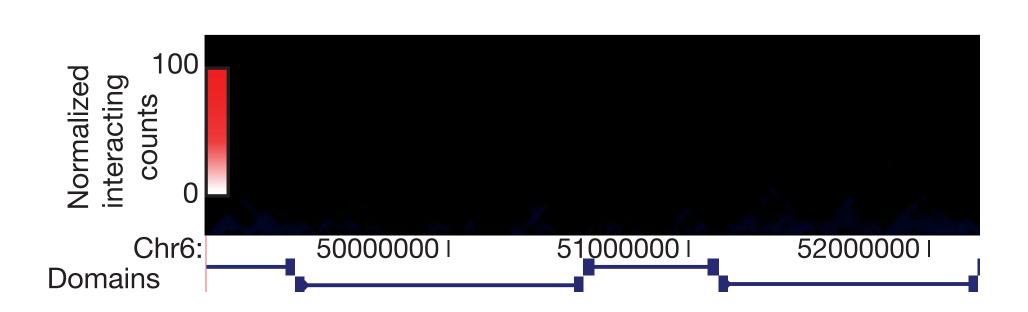


A/B Compartments



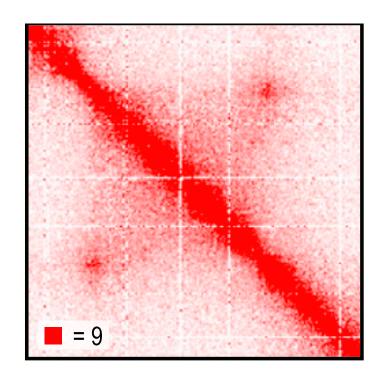
Lieberman-Aiden et al. *Science* 2009

TADs



Dixon et al. *Nature* 2012 Nora et al. *Nature* 2012

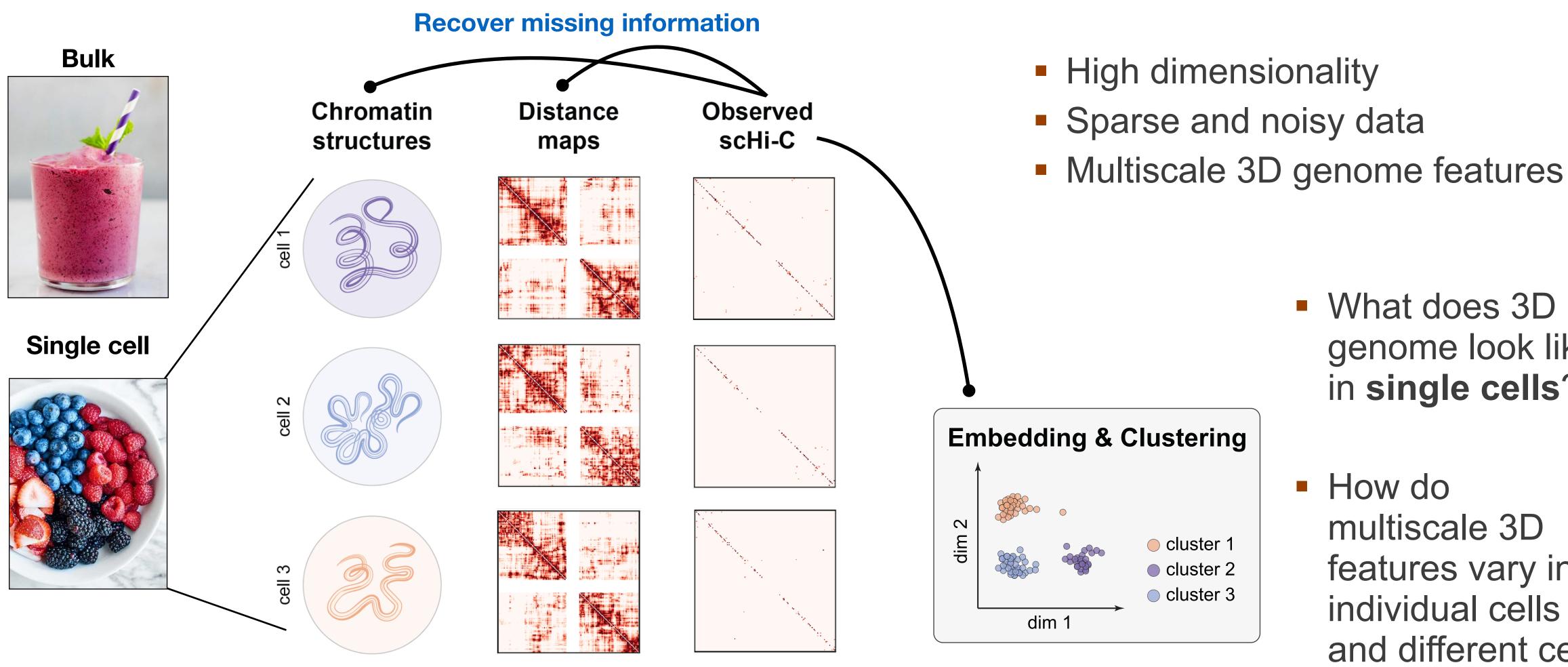
(w/ Frank Alber and Tom Misteli)



loops

Rao et al. *Cell* 2014 Jin et al. *Nature* 2013 Fullwood et al. *Nature* 2009

Challenges for single-cell 3D genome analysis using scHi-C data



Zhou et al. Annu Rev Biomed Data Sci 2021 Zhang et al. *Nat Rev Genetics* 2024

- What does 3D genome look like in single cells?
- How do multiscale 3D features vary in individual cells and different cell types?

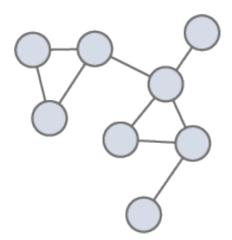
Hypergraphs for higher-order interactions

- Hypergraphs are used to represent higher-order interactions
 - Example: events (human, location, activity)
- A hypergraph H = (V, E)
 - V/E: the set of nodes / hyperedges
 - $e \in E$: a hyperedge connects two or more nodes
 - $\forall e \in E$, |e| = k, H is a k-uniform hypergraph

Hyper-SAGNN — Hypergraph representation learning

- Input: a hypergraph with features for each node (non-uniform heterogeneous hypergraph)
- We aim to
 - Learn embeddings for the nodes in the hypergraph
 - Learn to predict the existence of hyperedges given the node embeddings

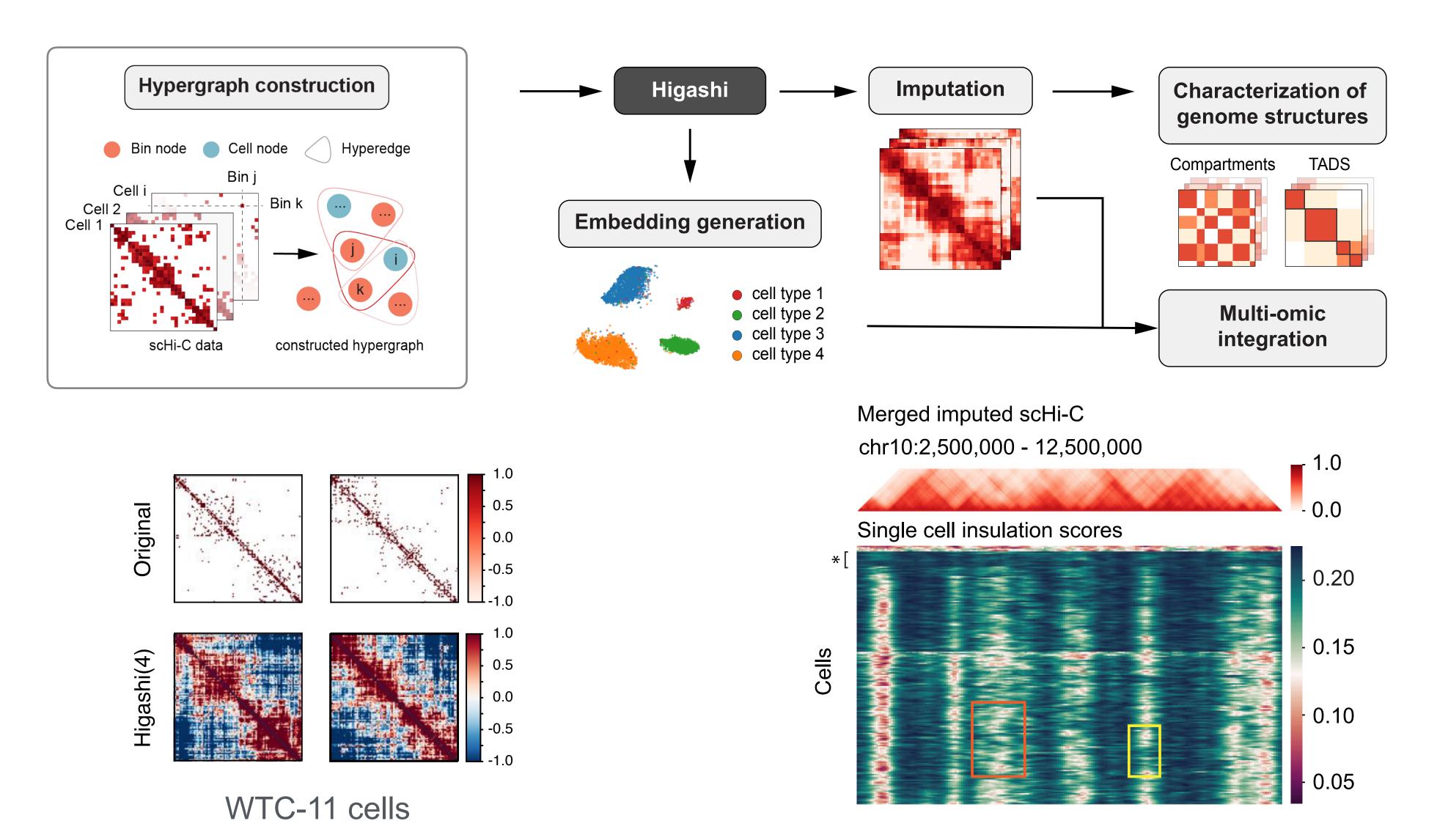
Example of a graph



Example of a hypergraph

- Coauthorship (hyperedge) Corresponding Author (node) Coauthor (node)

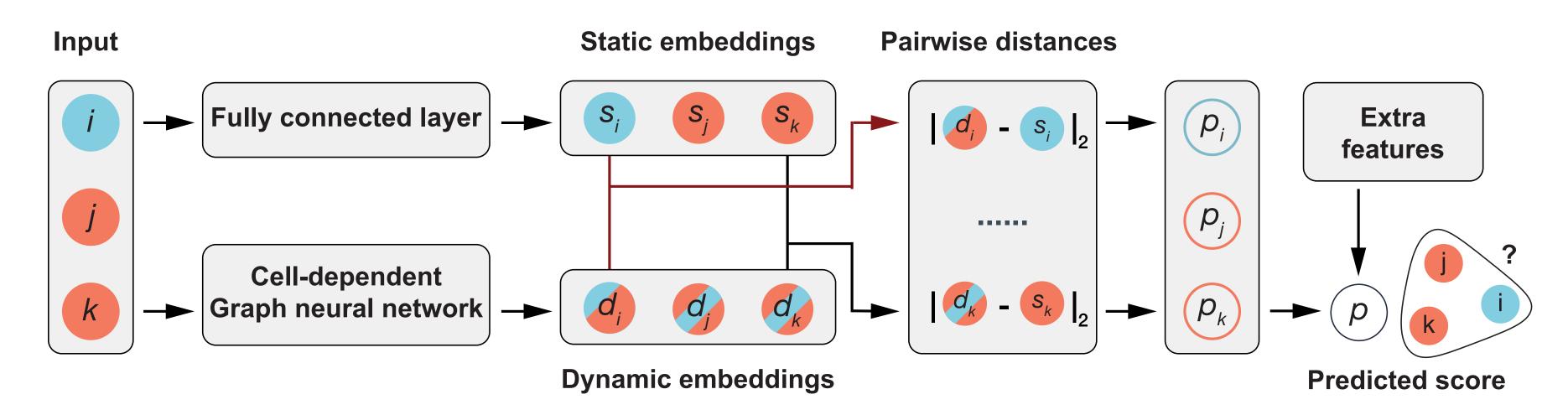
Higashi — modeling scHi-C data as a hypergraph



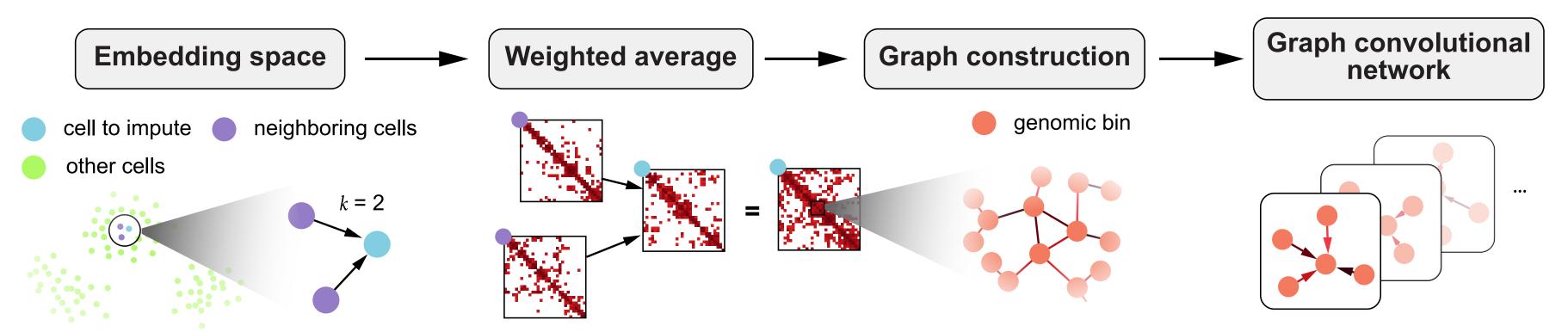
Higashi — Zhang, Zhou, and Ma. *Nature Biotechnology*, 2022 (also Fast Higashi — Zhang et al. *Cell Systems* 2023)

Higashi — modeling scHi-C data as a hypergraph

Network structure



Cell-dependent GNN

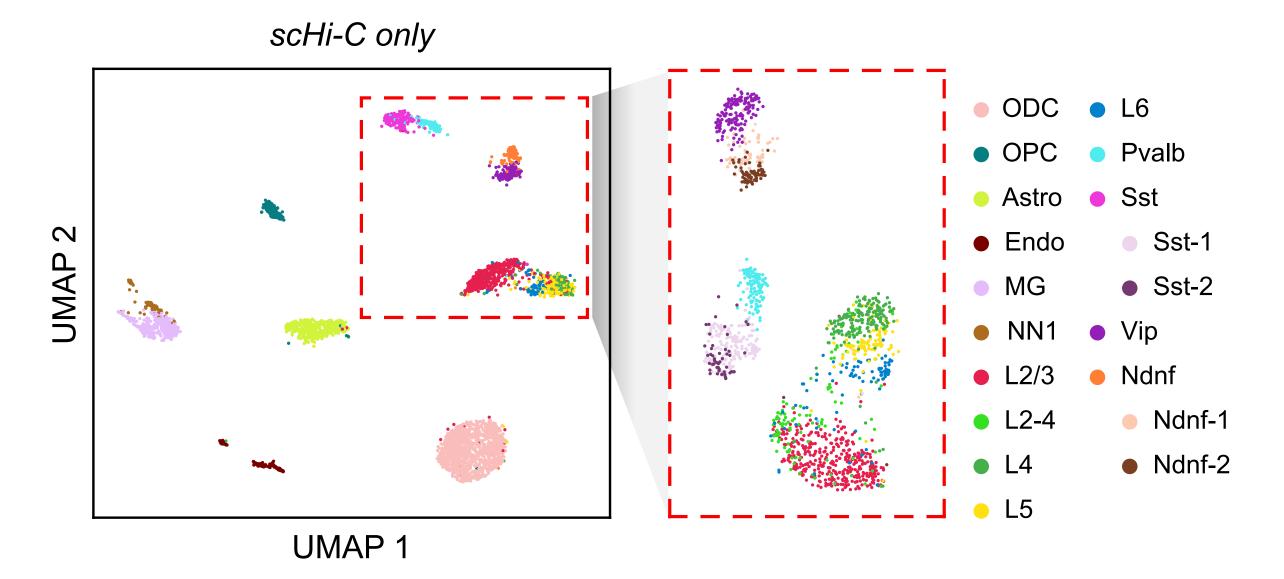


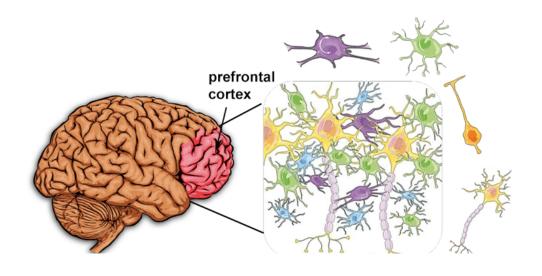
Zhang et al. *Nat Biotechnol*, 2022 Zhang et al. *ICLR* 2020

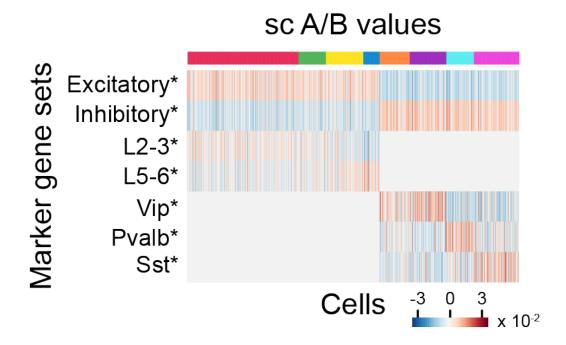
Higashi separates complex cell types in human prefrontal cortex

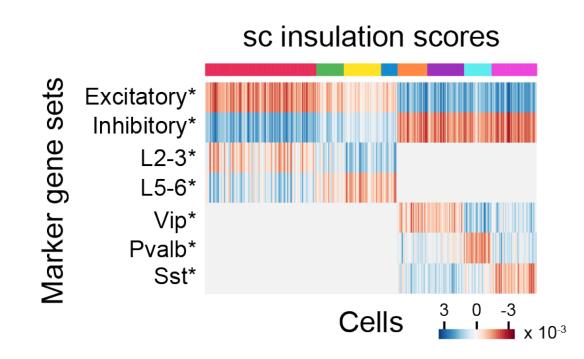
- Higashi embeddings separate neuron subtypes using only the scHi-C part of sn-m3c-seq (data from Lee et al. Nat Methods 2019)
- Cell type-specific 3D chromatin structures near marker genes

Higashi embeddings



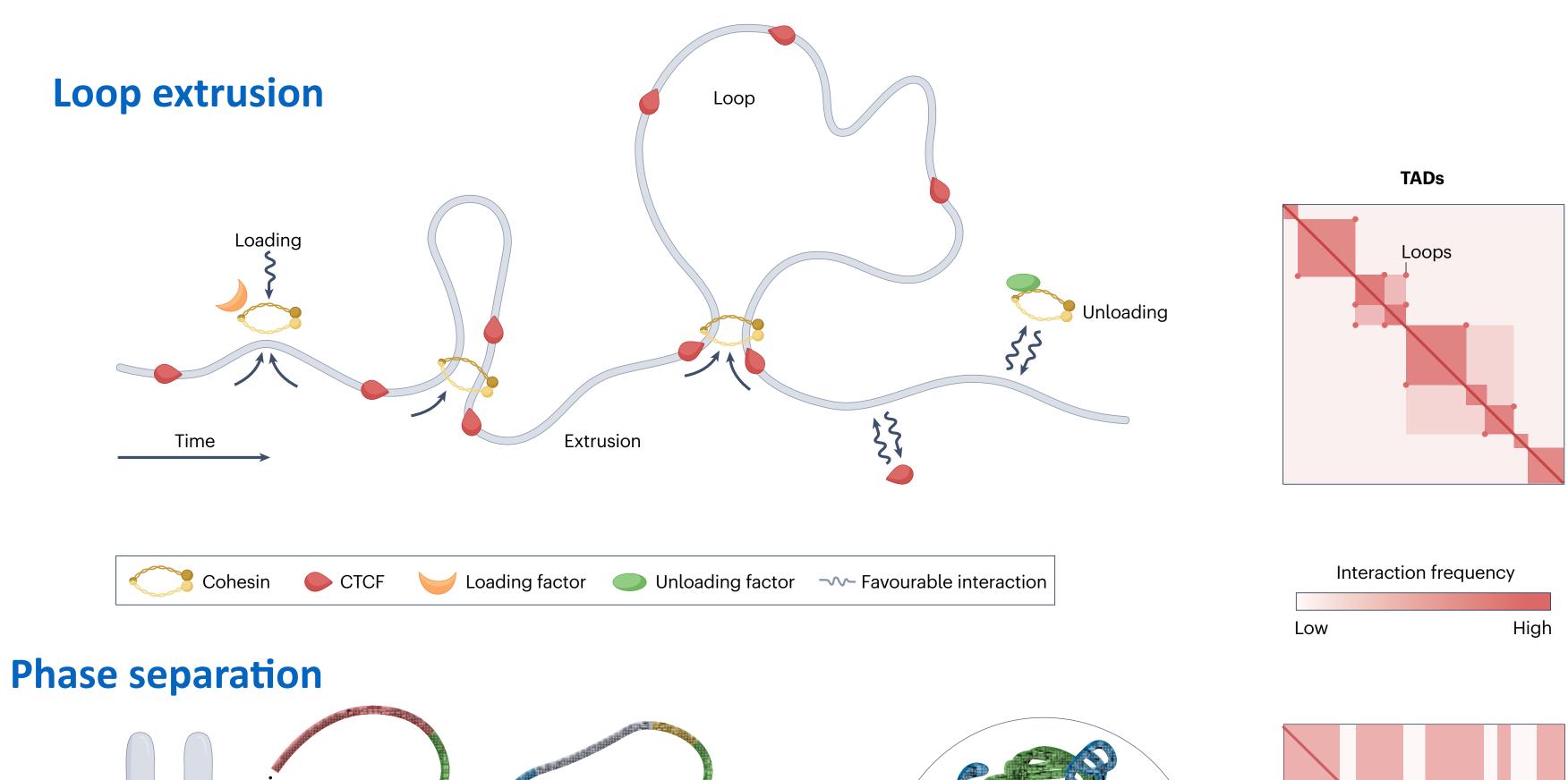




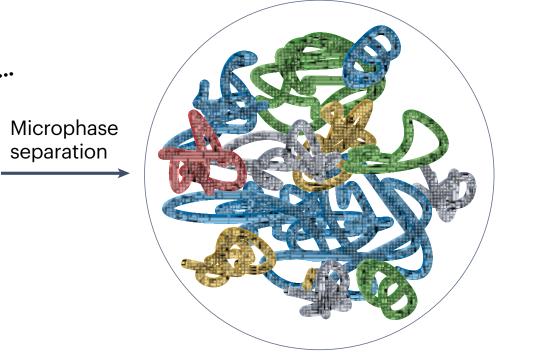


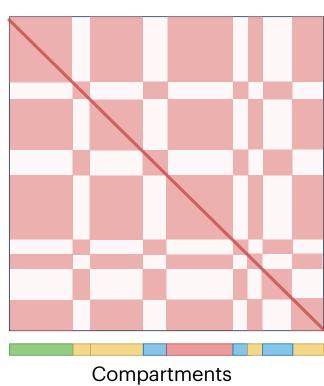
^{*} stands for using other neurons as background

Mechanisms of genome folding



Different affinities

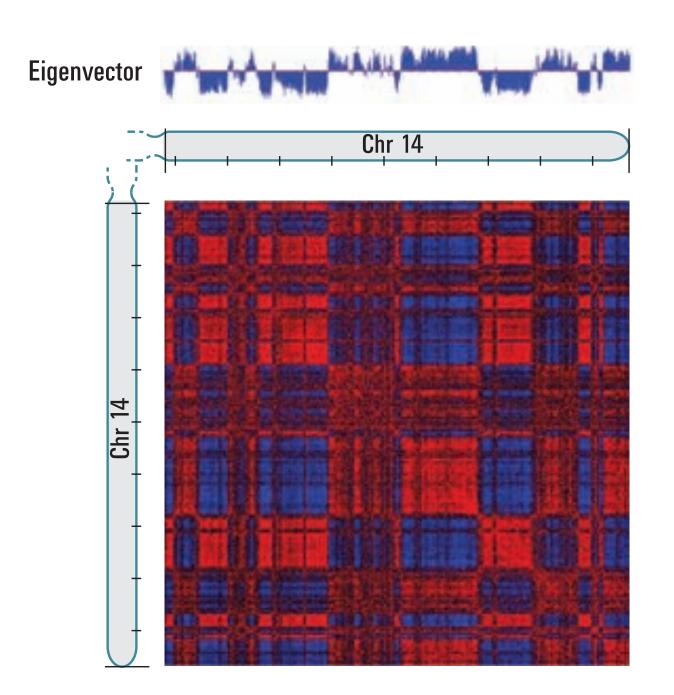




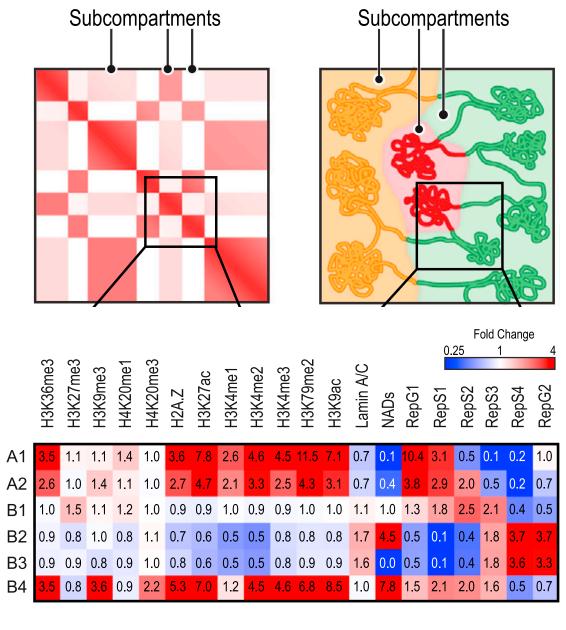
Zhang et al.

Patterns of chromosome spatial segregation based on Hi-C data

- Chromosomes are segregated into A and B compartments
- High-coverage Hi-C in GM12878 identified subcompartments by clustering interchromosomal contact maps

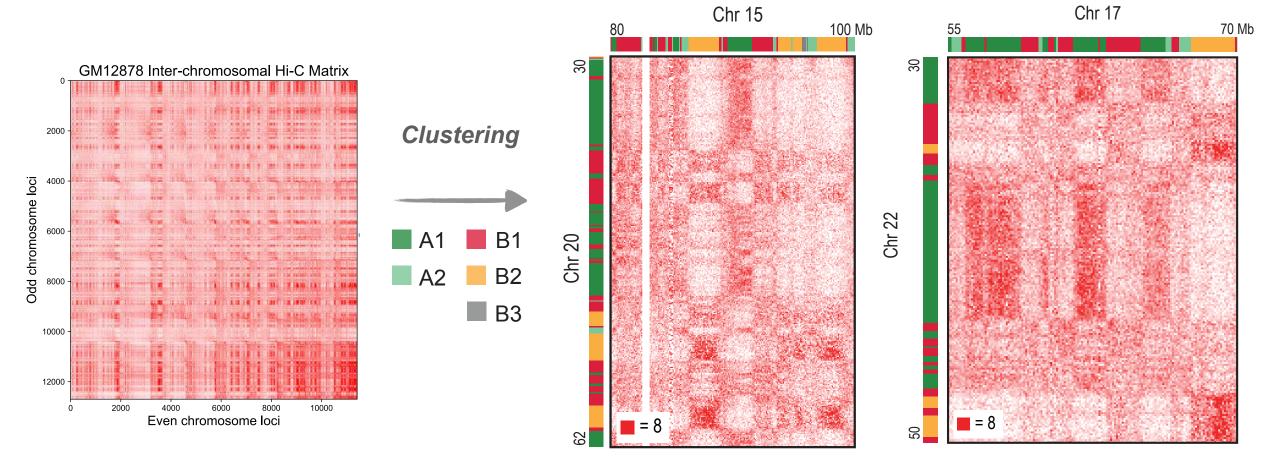


Lieberman-Aiden et al. *Science* 2009



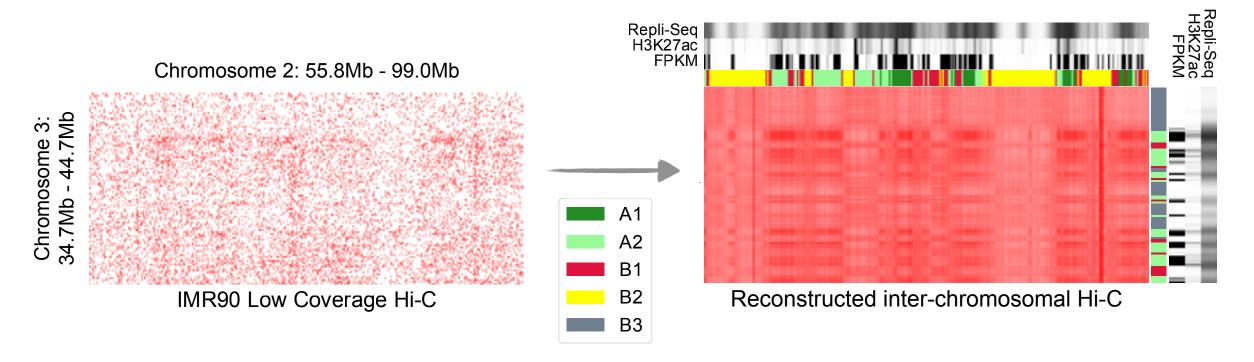
Rao et al. Cell 2014

Clustering using high-coverage GM12878 data



Rao et al. Cell 2014

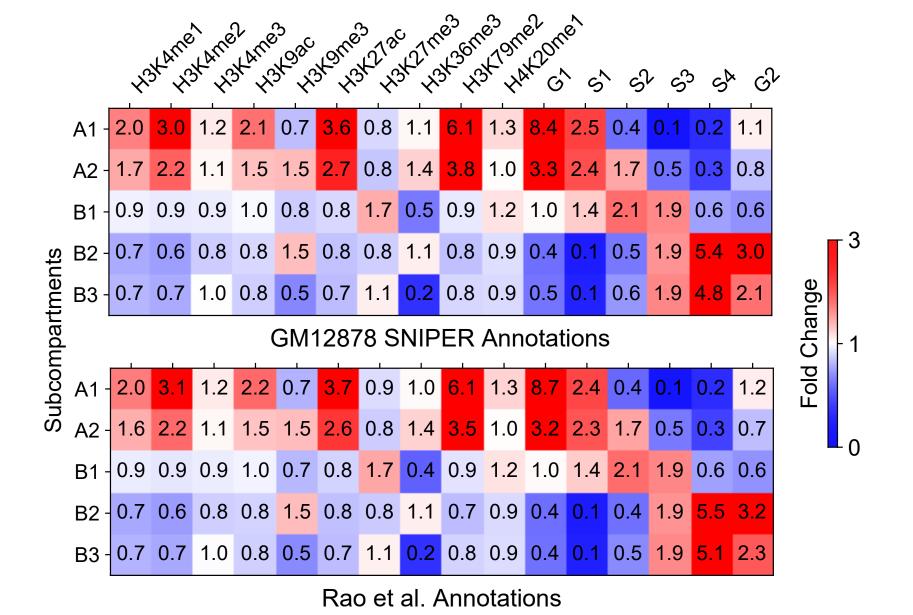
Addressing sparsity of inter-chromosome interactions

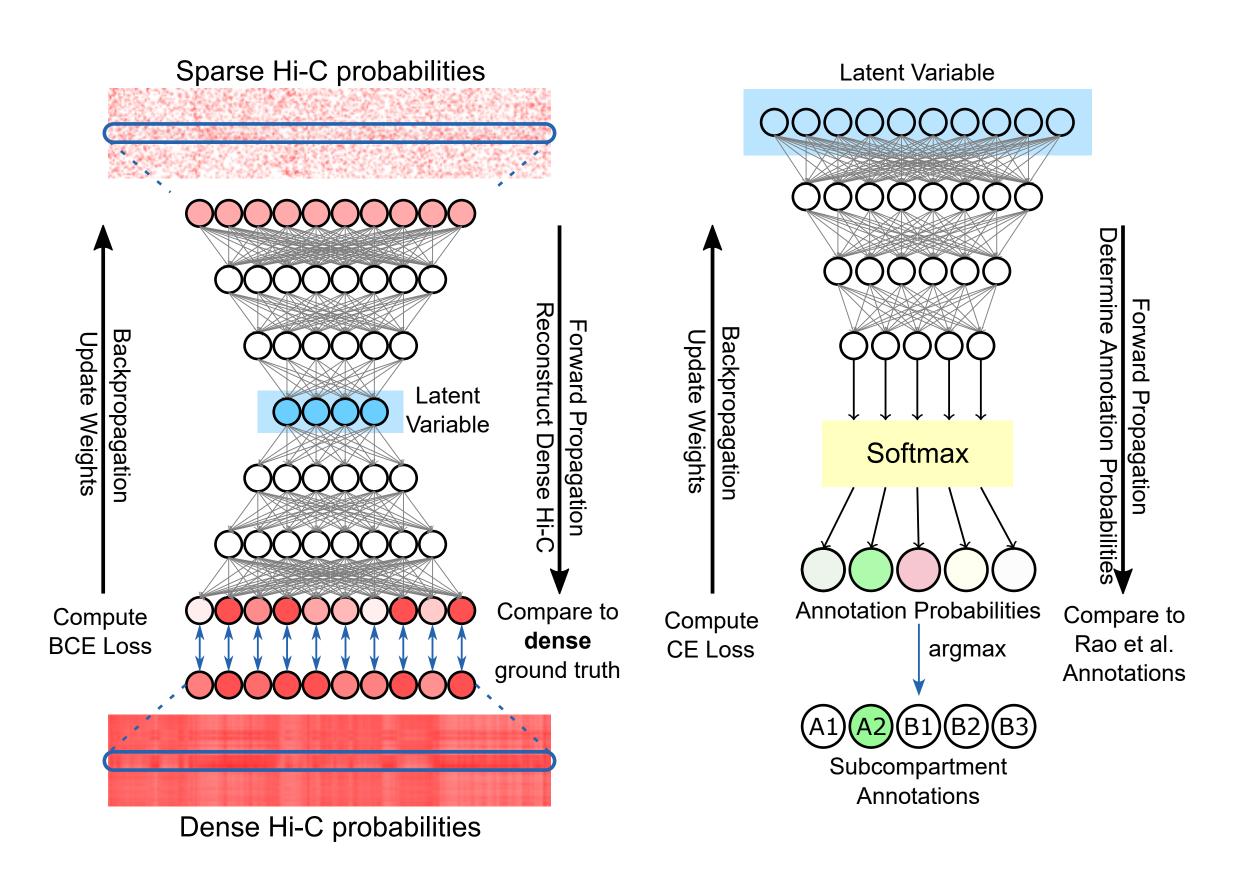


SNIPER — Xiong and Ma. Nat Commun 2019

SNIPER — inferring Hi-C subcompartments

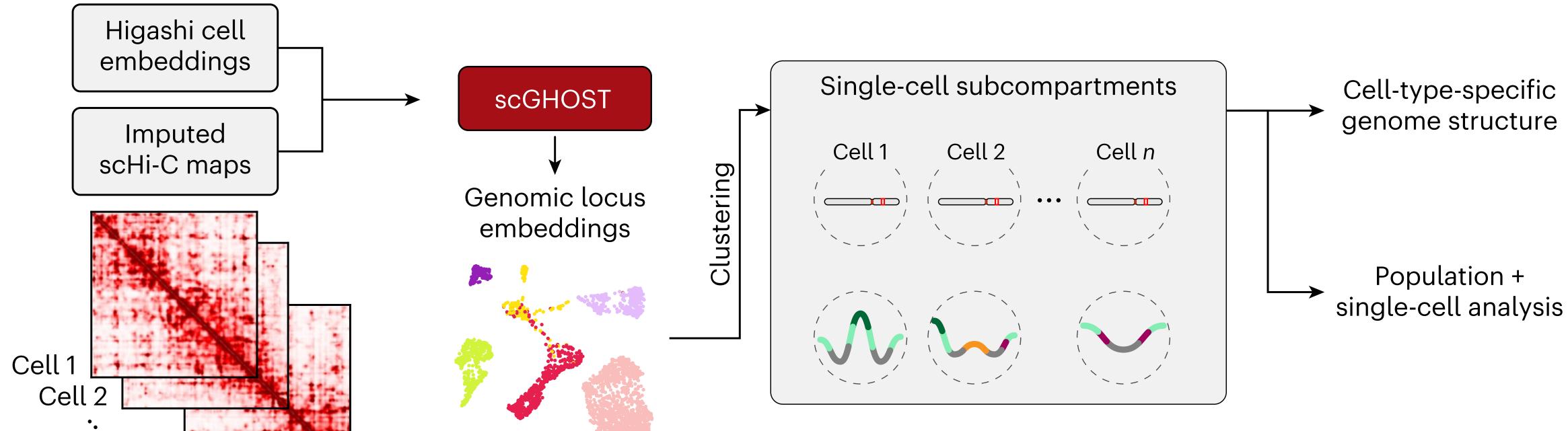
- Autoencoder compresses sparse interchromosomal Hi-C contacts into embeddings and imputes missing contacts
- A classifier then uses embedded interchromosomal Hi-C data to predict subcompartments





SNIPER — Xiong and Ma. *Nat Commun* 2019

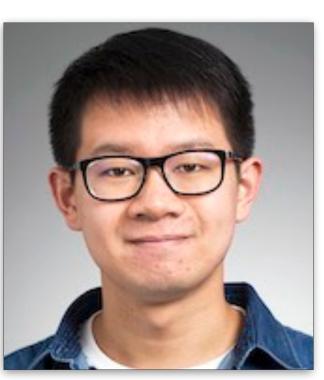
scGHOST: Identifying single-cell 3D genome subcompartments



scHi-C contact maps as graphs

Cell n

- Cell embeddings define k-NN cells. Genomic locus embeddings lead to subcompartments
- A unique random sampling procedure that filters noise in imputed scHi-C data



Ruochi Zhang

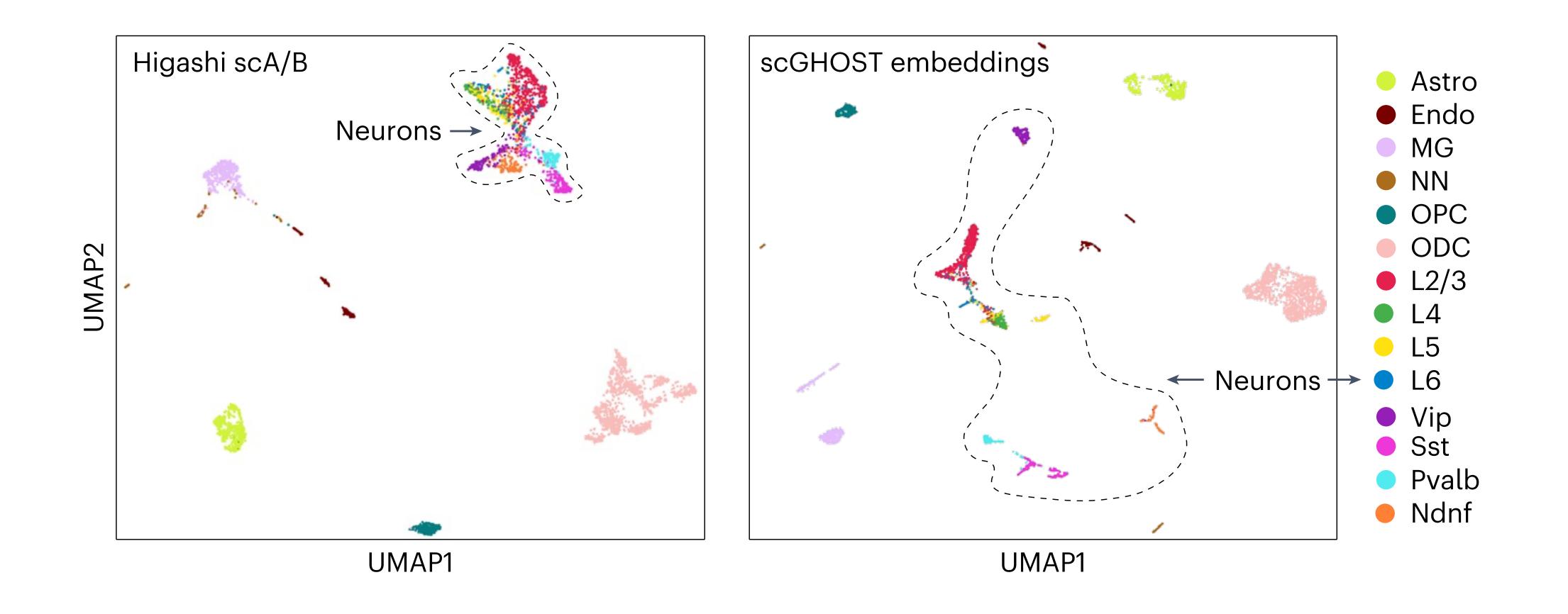
Xiong #, Zhang #, and Ma. Nature Methods, 2024

scGHOST: Identifying single-cell 3D genome subcompartments



- Sampling based on both first-order random walks and second-order random walks
- Graph node embedding using NN

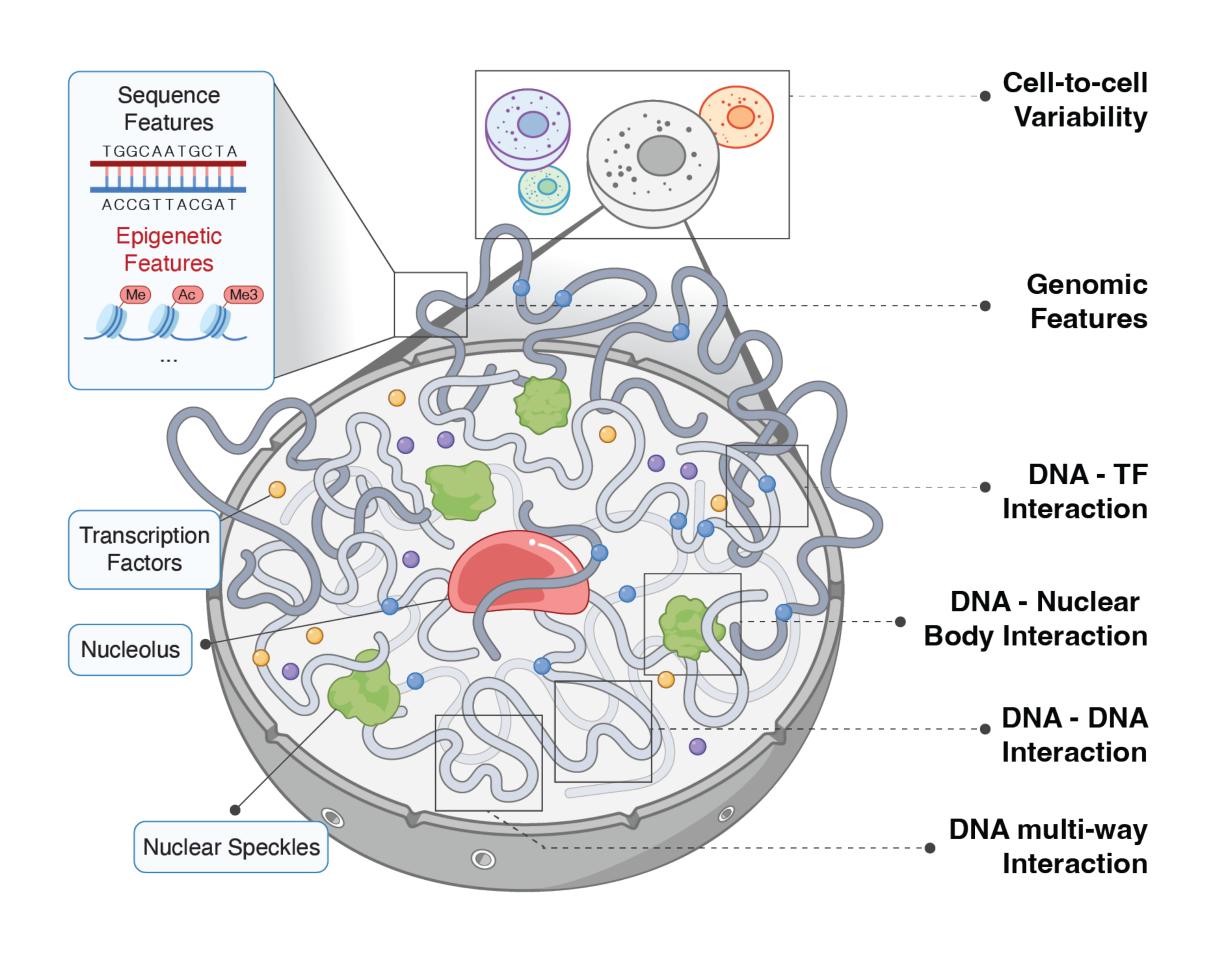
Single-cell subcompartments of human prefrontal cortex

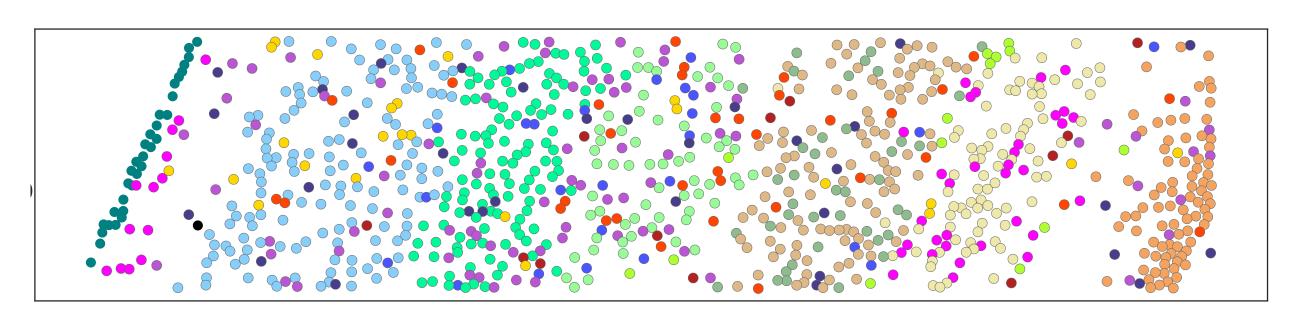


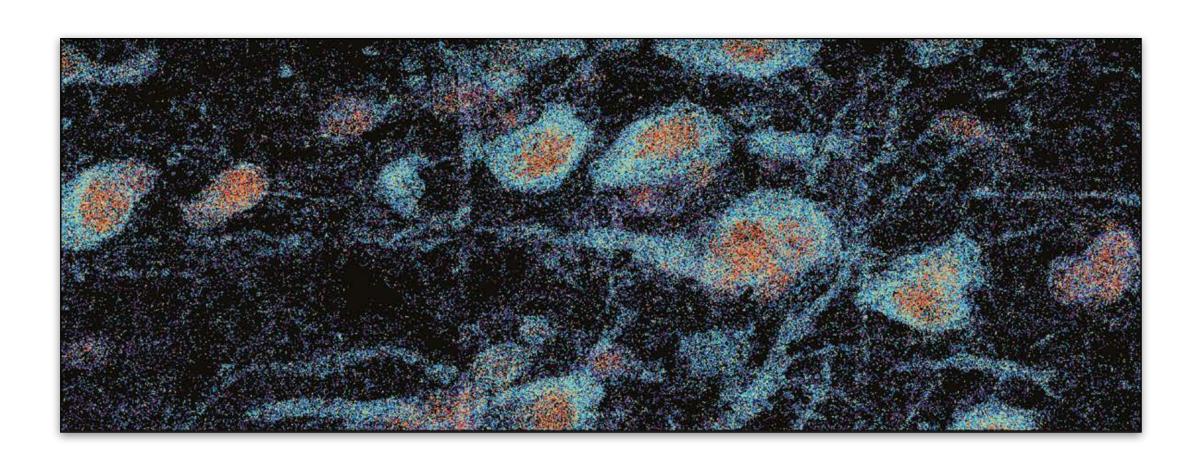
Data from: Lee et al. Nat Methods 2019

Xiong #, Zhang #, and Ma. Nature Methods, 2024

Spatial organization of genomes and cells





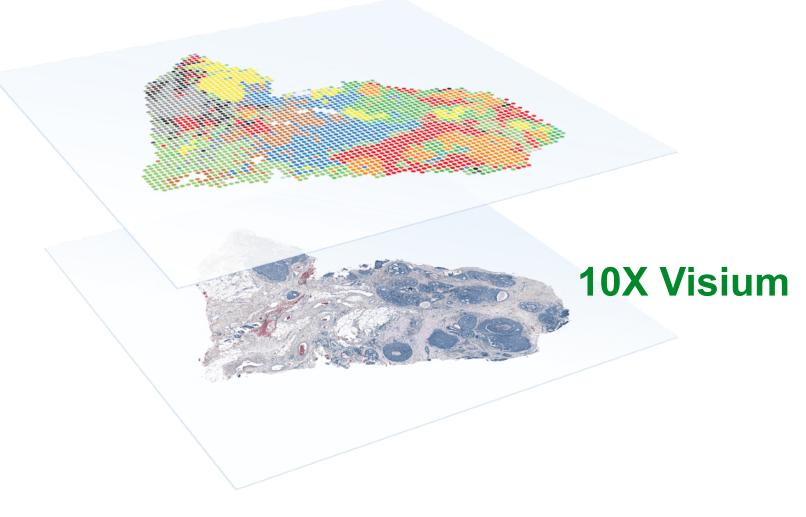


Spatial transcriptomics technologies reveal where in a tissue each gene is expressed

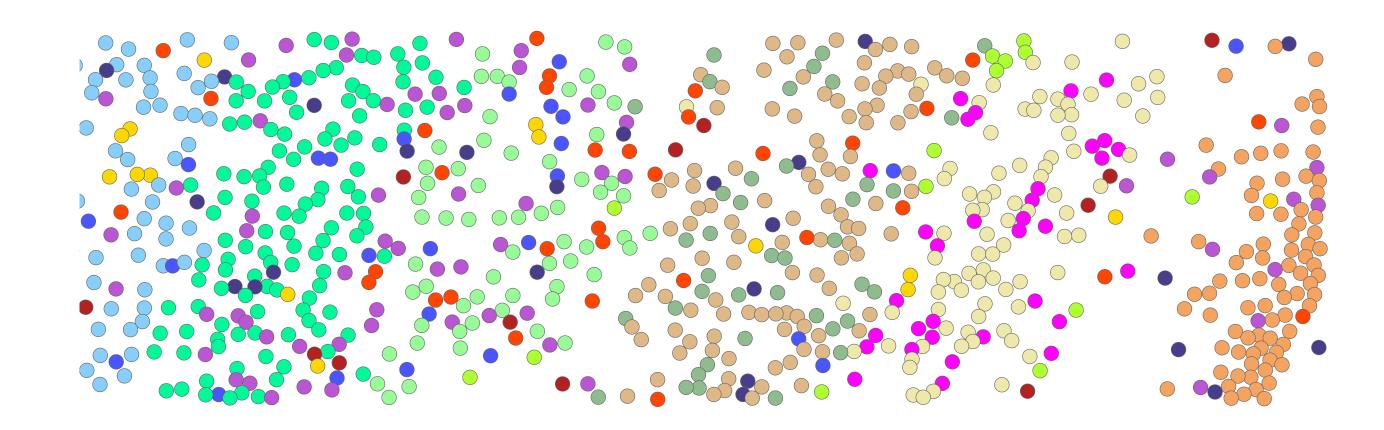
Spatial transcriptomic technologies

- Imaging-based single-cell resolution
 - STARmap / STARmap PLUS Wang et al. *Science* 2018 / Zeng et al. *Nat Neurosci* 2023
 - seqFISH+ Eng et al. *Nature* 2019
 - MERFISH / Vizgen MERSCOPE Moffitt et al. *Science* 2018
- Sequencing-based full transcriptome
 - Visium Stahl et al. *Science* 2016
 - Slide-seq / Slide-seq V2 Rodriques et al. *Science* 2019 / Stickels et al. *Nat Biotech* 2021
 - Stereo-seq Chen et al. *Cell* 2022

STARmap



 Challenge: Lack of computational methods that integrate both gene expression and spatial factors to model cell identity



SPICEMIX enables integrative singlecell spatial modeling of cell identity

Chidester B#, Zhou T#, Alam S, and Ma J. Nature Genetics, 2023

Ben Chidester

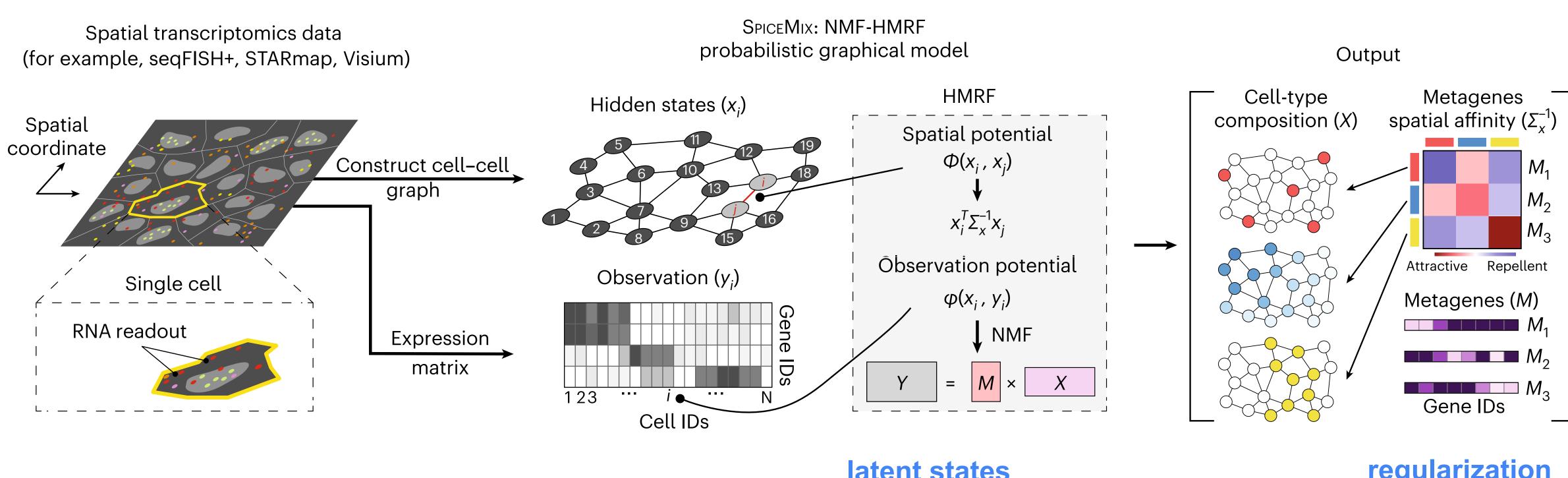
Tianming Zhou



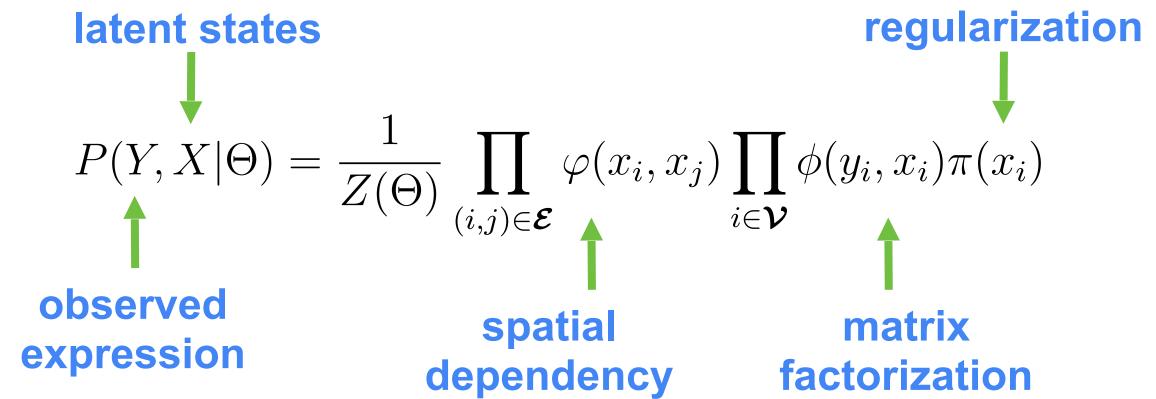
Shahul Alam

January 2023 issue

SPICEMIX — NMF + HMRF



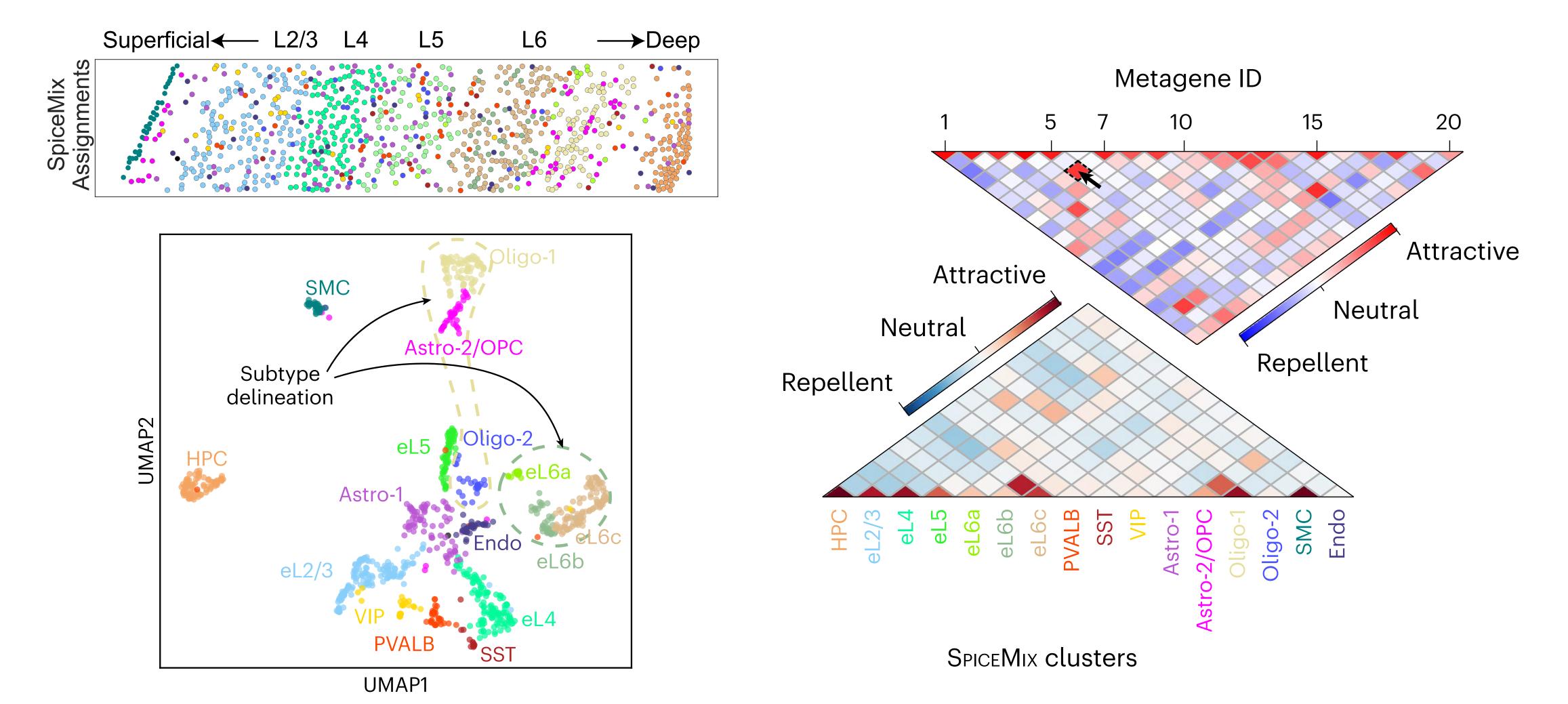
$$y_i$$
 M x_i —— latent embedding/representation —— metagene = spatially variable features



Chidester #, Zhou #, Alam, and Ma. Nature Genetics, 2023

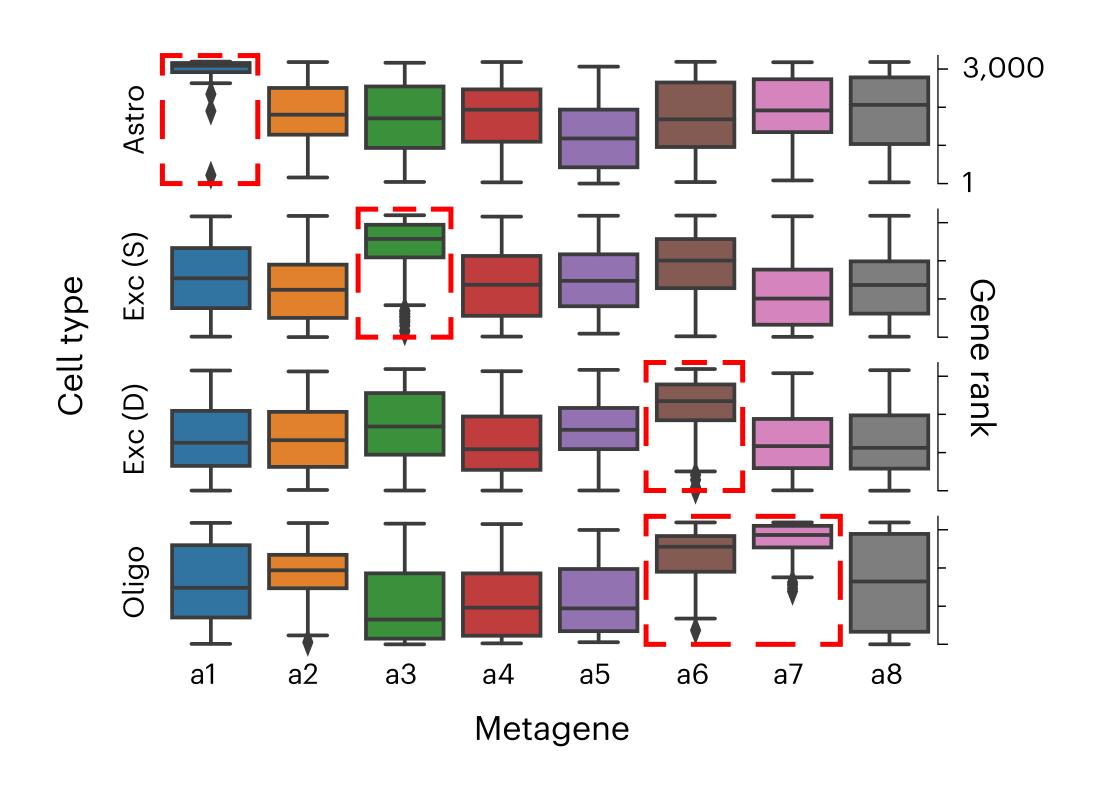
Application to the STARmap dataset

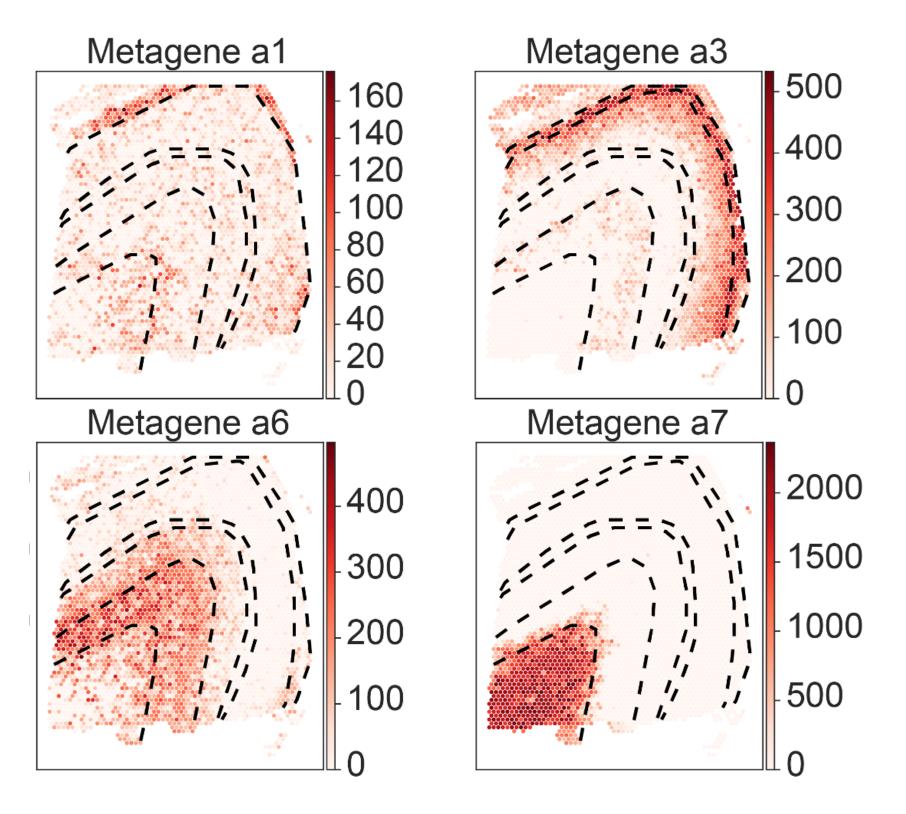
- Mouse visual cortex Data from Wang et al. Science 2018
- SpiceMix infers rare subtypes and spatially variable metagenes



SPICEMIX disentangles cell type composition

- Human dorsolateral prefrontal cortex (DLPFC)
 - Data from Maynard et al. Nature Neuroscience, 2021
- The correspondence between metagenes and layers is not one-to-one
- SPICEMIX captures the continuous gradient along the layer-axis

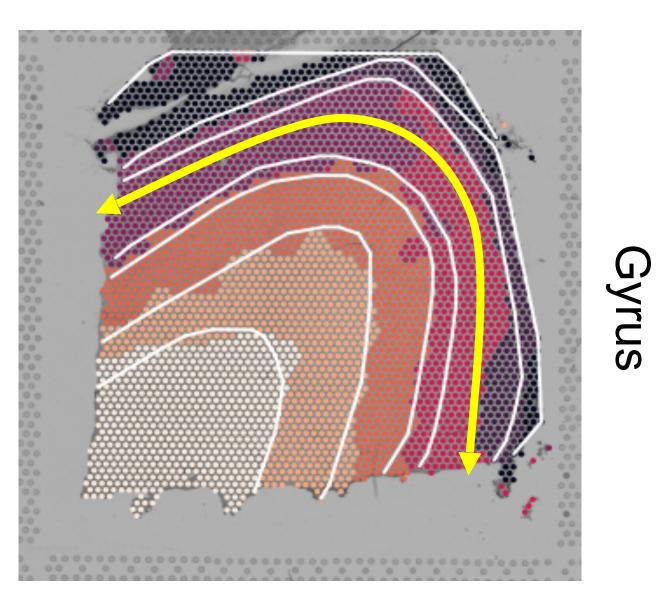


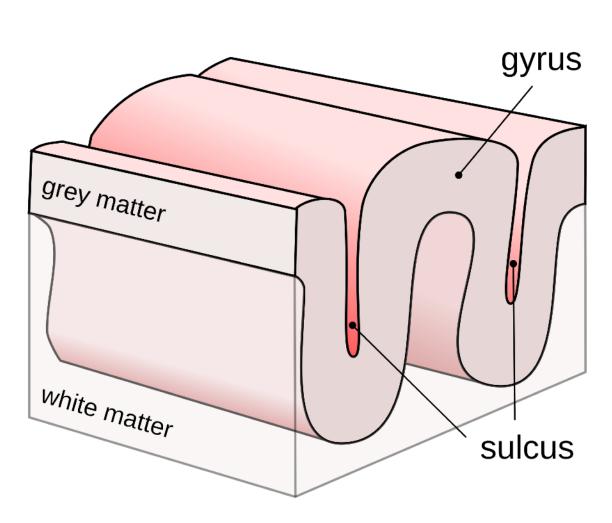


Chidester #, Zhou #, Alam, and Ma. Nature Genetics, 2023

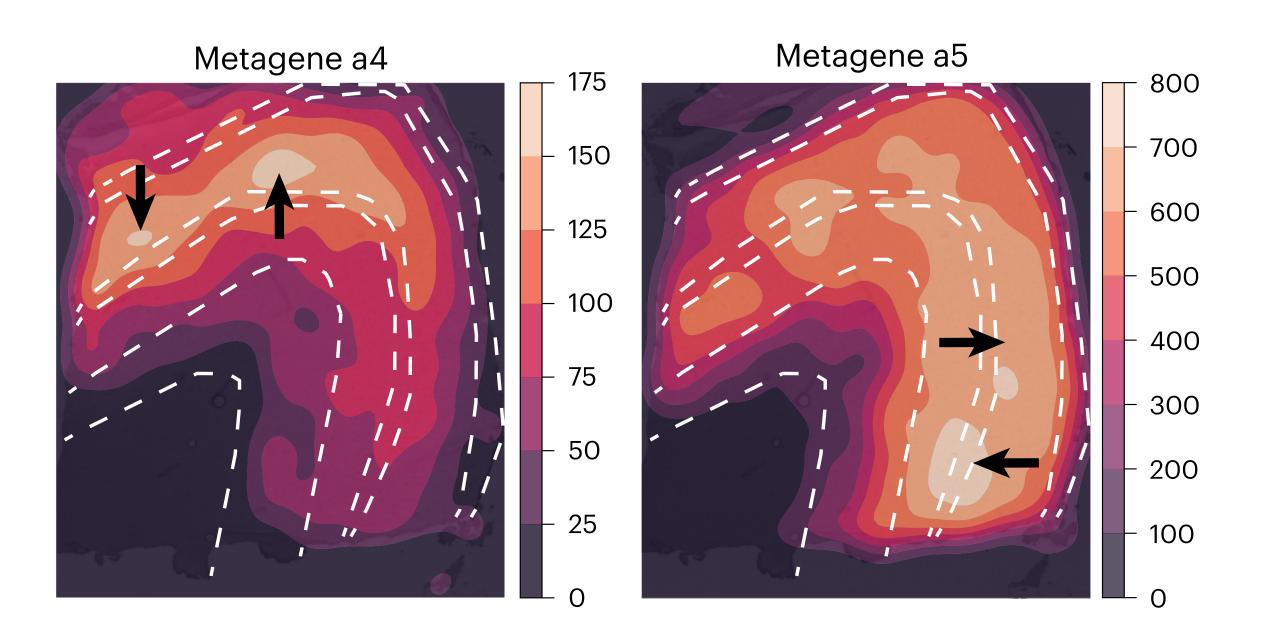
SPICEMIX identifies the gyro-sulcal gradient

Sulcus



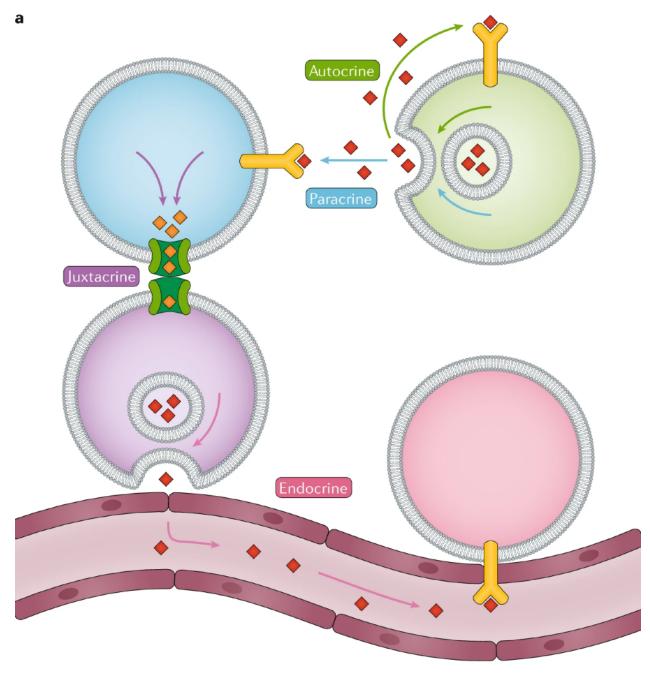


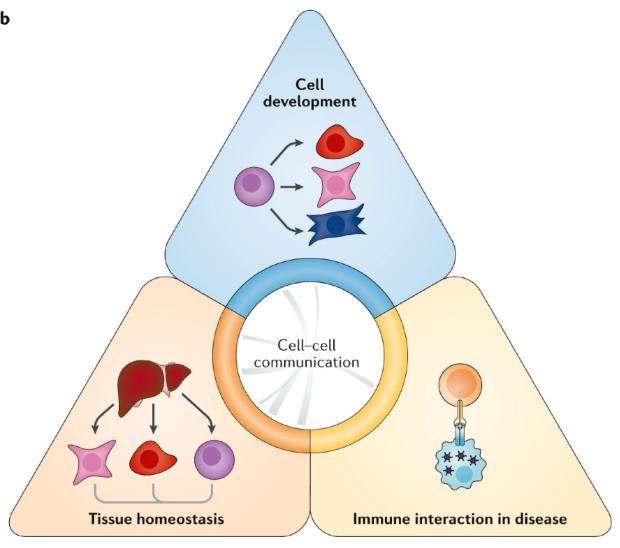
- The sulcal side and gyric side are anatomically different
- Metagenes a4 and a5 identified the gradient along the gyro-sulcal axis, supported by differentially expressed genes



Limitations of analyzing cellular interactions

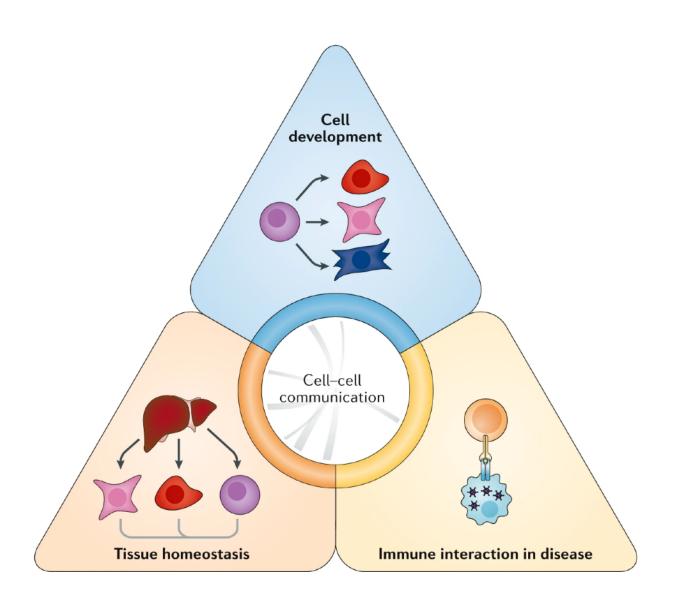
- We need a method to quantify cell-cell interactions and address the following:
 - Cell-cell interactions are specific to cell type/state
 - Cell-cell interactions are specific to spatial domains/context
 - Allowing for in silico spatial perturbation predicting the effect of a changing environment on a cell
- Cell-cell interactions are inherently multi-scale
- Current cell-cell interactions databases are incomplete
 - Need de novo approaches to learn from the data





STEAMBOAT: modeling cell-cell interactions

- The molecular profile of cells is a result of superimposing:
 - intrinsic factors
 - interactions at multiple scales
- How do we decompose them and model such multiscale interactions?

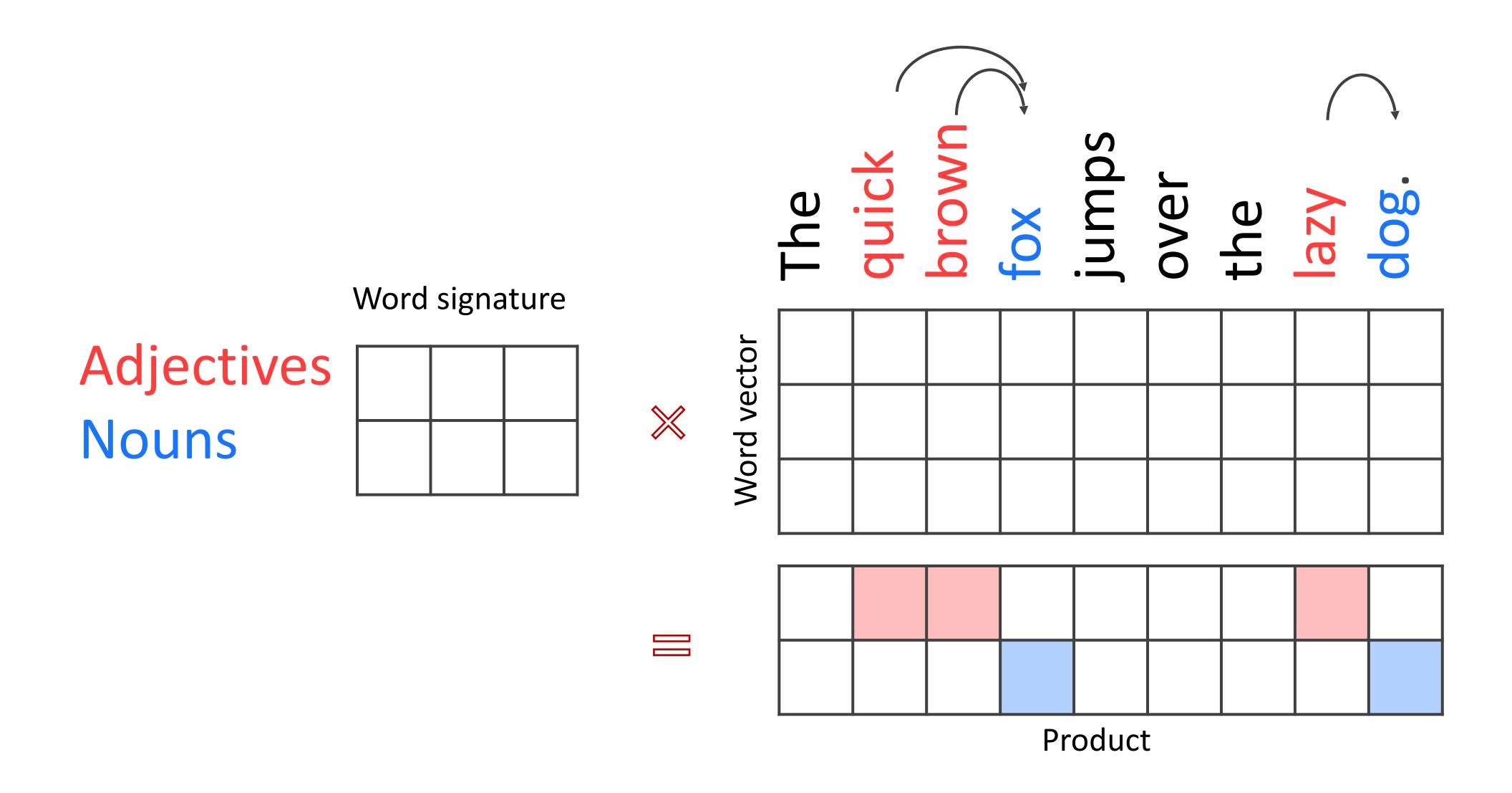


Attention-based multiscale delineation of cellular interactions in tissues

Shaoheng Liang

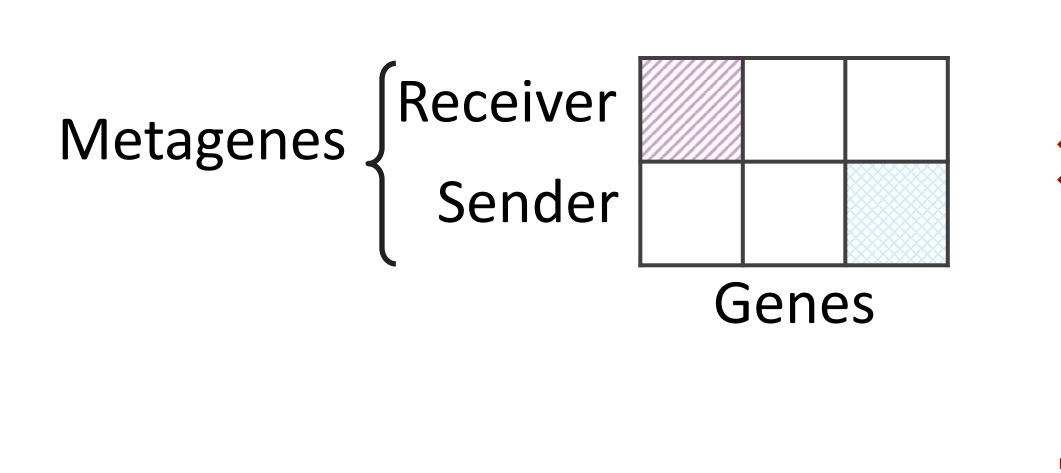
Gene expression & spatial location

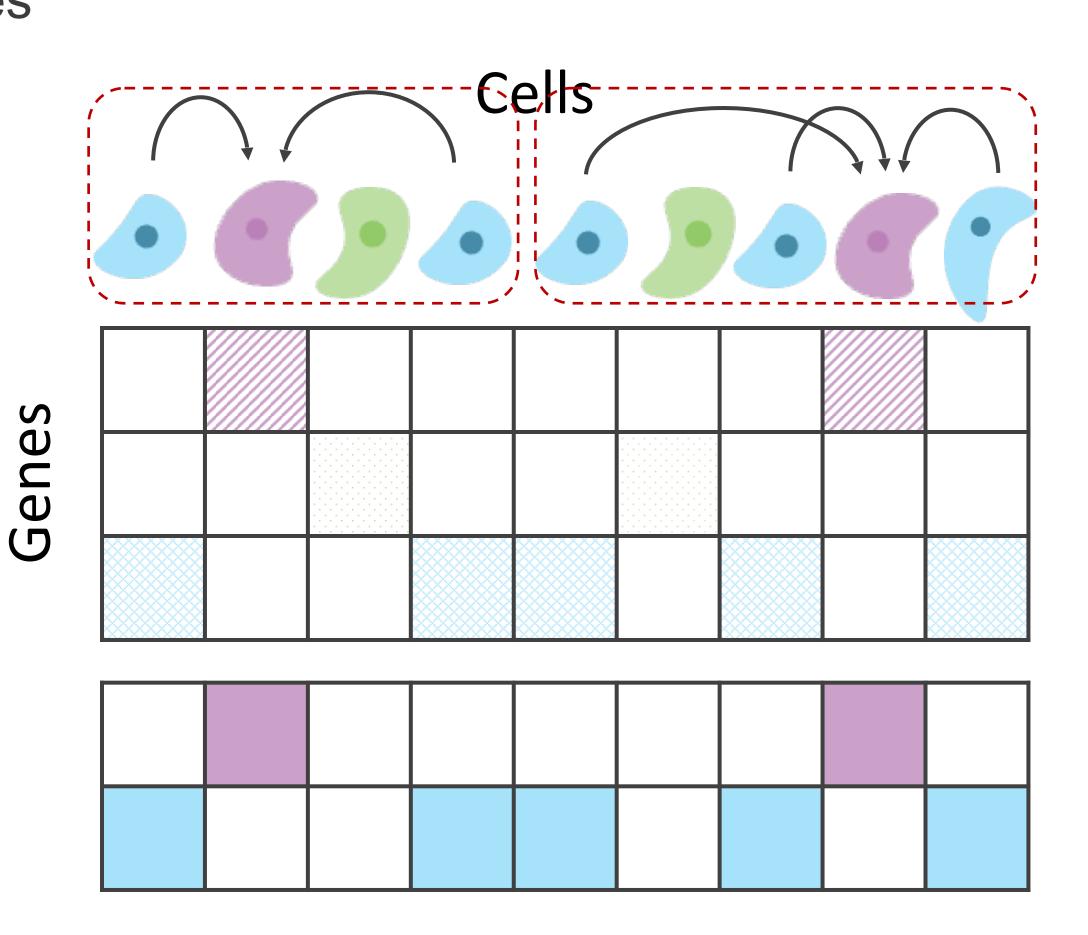
Find words that interact by attention



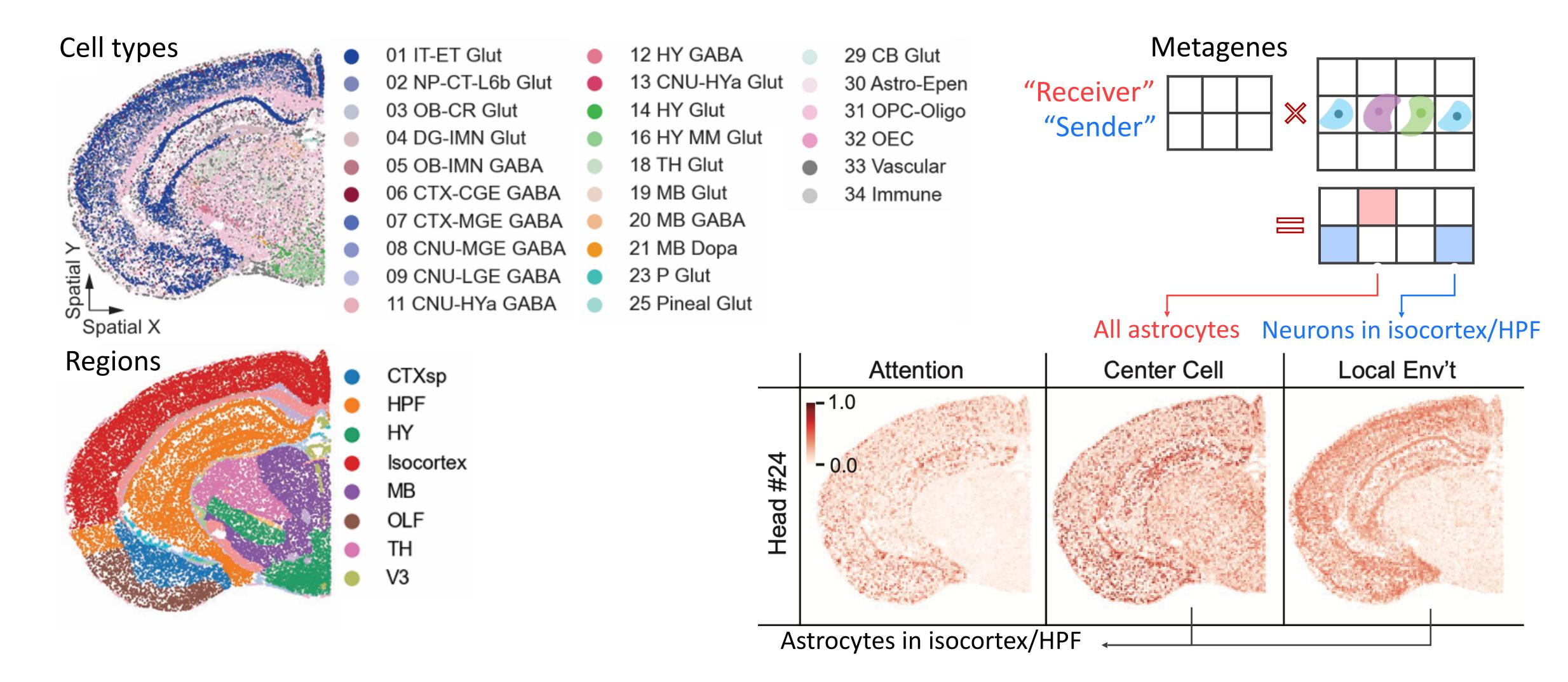
Cells in a tissue as words in a sentence

- Metagenes: weighted combination of genes that are expressed in a group of cells.
- Multiscale: different interactions are over different distances.





STEAMBOAT identifies underlying factors in mouse brain



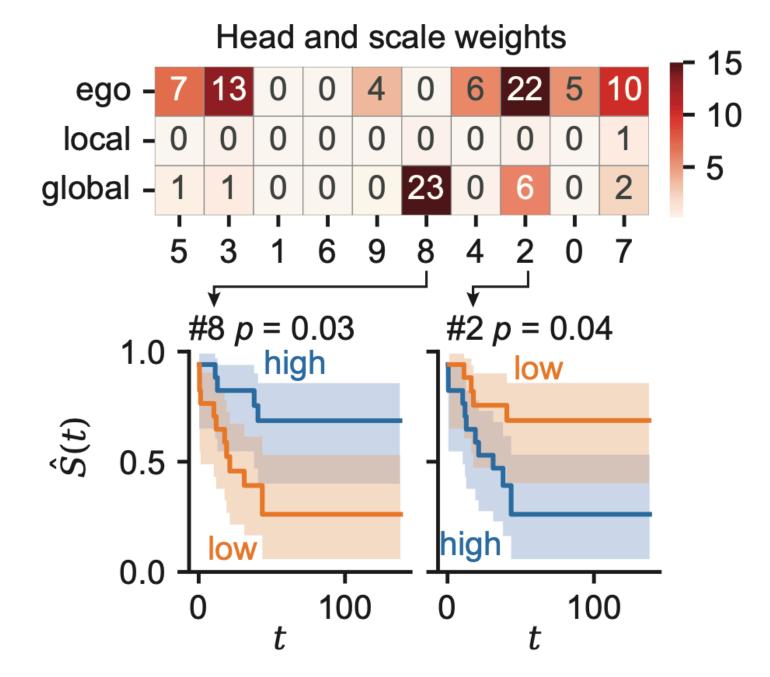
STEAMBOAT unveils spatial features in colorectal cancer

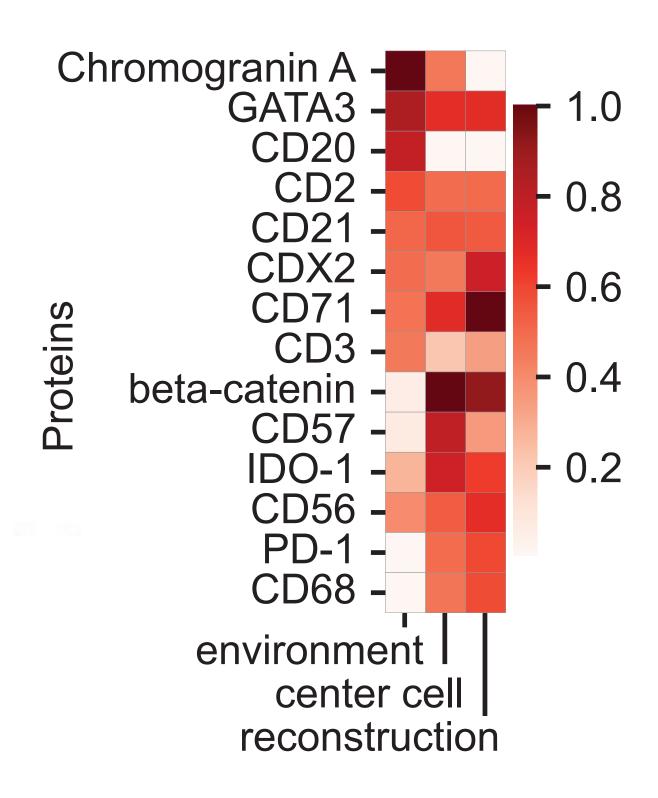
Resource

Coordinated Cellular Neighborhoods Orchestrate Antitumoral Immunity at the Colorectal Cancer Invasive Front

Christian M. Schürch, 1,2,6,* Salil S. Bhate, 1,2,3,6 Graham L. Barlow, 1,2,6 Darci J. Phillips, 1,2,4,6 Luca Noti,5 Inti Zlobec,5 Pauline Chu, 1,2 Sarah Black, 1,2 Janos Demeter, 1 David R. McIlwain, 1,2 Shigemi Kinoshita, 1 Nikolay Samusik, 1 Yury Goltsev, 1,2 and Garry P. Nolan 1,2,7,*

Weight of three scales for all attention heads

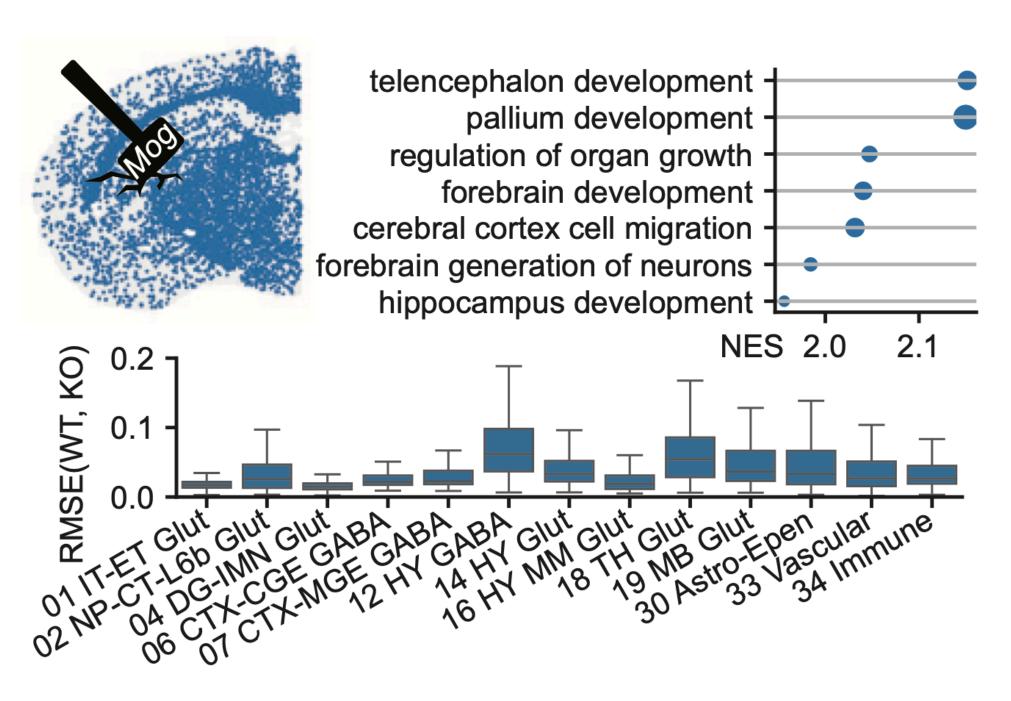




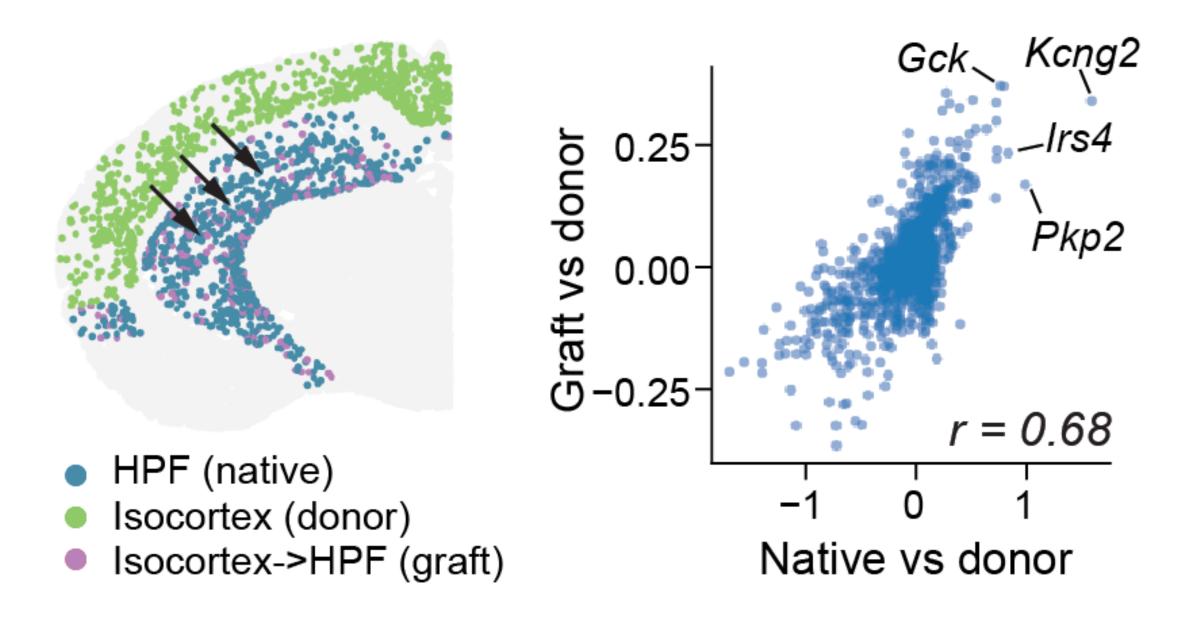
Metagene for head #8

Liang et al. bioRxiv 2025

STEAMBOAT enables in silico spatial perturbations



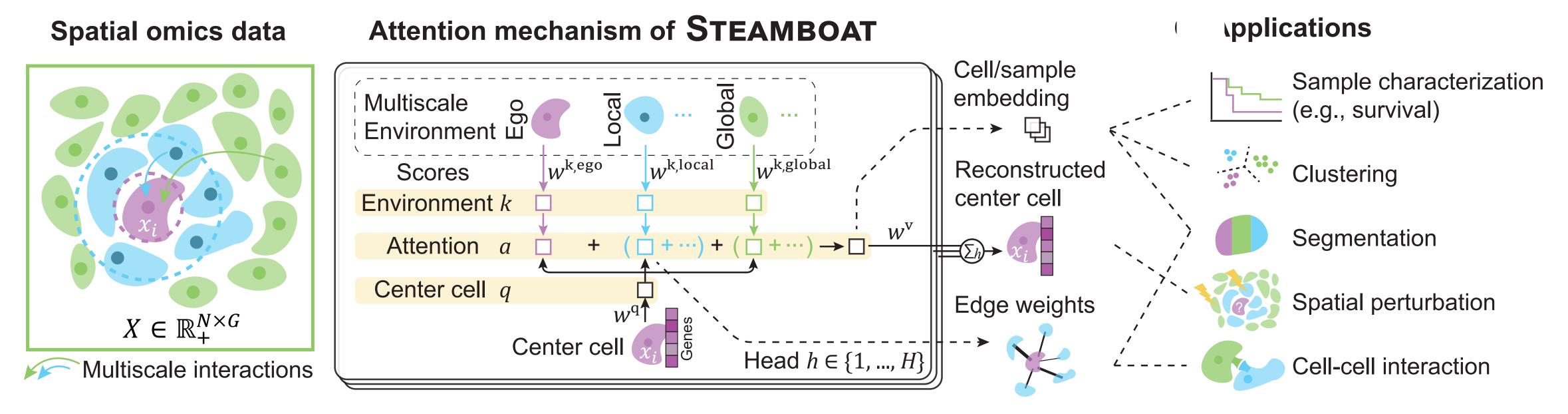
What happens in other cells?



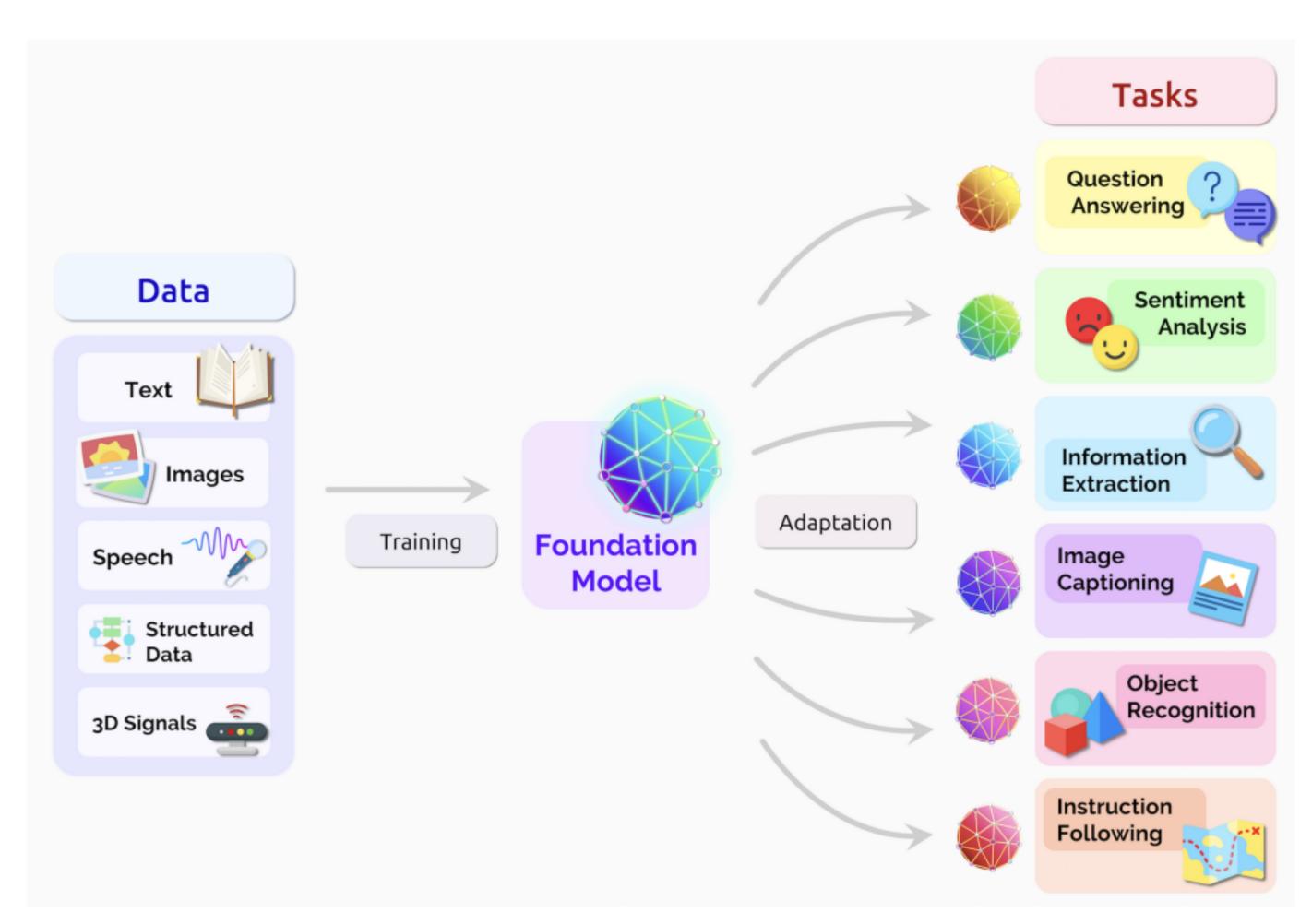
- Move OPC-Oligo from Isocortex to HPF region.
- Gene expression of transplanted cells change towards native ones.

Steamboat for modeling cell interactions in tissues

- Steamboat is a de novo multi-scale cell-cell interaction model.
- Many applications: spatial perturbation; characterize samples; spatial domains & cell types
- The model could serve as the basis for tissue Foundation Model.



What is a Foundation Model?



"On the Opportunities and Risks of Foundation Models"
Bommasani et al. Stanford CRFM 2022

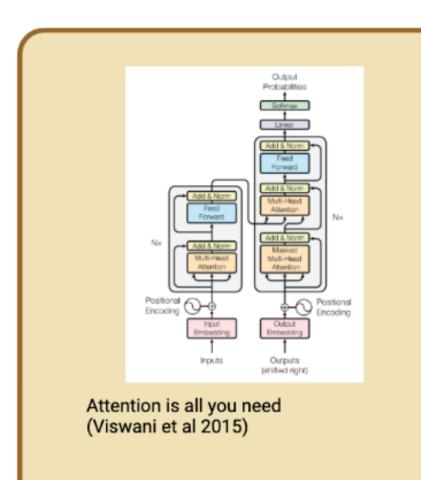
- Foundation models are a replacement for task-specific models
- Large-scale pretraining on large unlabeled datasets
- Finetuning for diverse downstream tasks
- Self-supervised learning
- Transfer learning
- GPT-4, DALL-E 2, BERT, etc.

Application of (large) language models in genomics

- Large pretrained models can be utilized for finetuning on downstream tasks with limited training data
- Data sparsity problem in biology
 - noisy/sparse data
 - incomplete data in biology, e.g., rare disease, precious samples
- Embeddings with more generalized knowledge can help mitigate batch effects
- A few interesting attempts in several direction:
 - Modeling genomic sequences
 - Modeling single cell gene expression data
 - Modeling protein sequence and structure

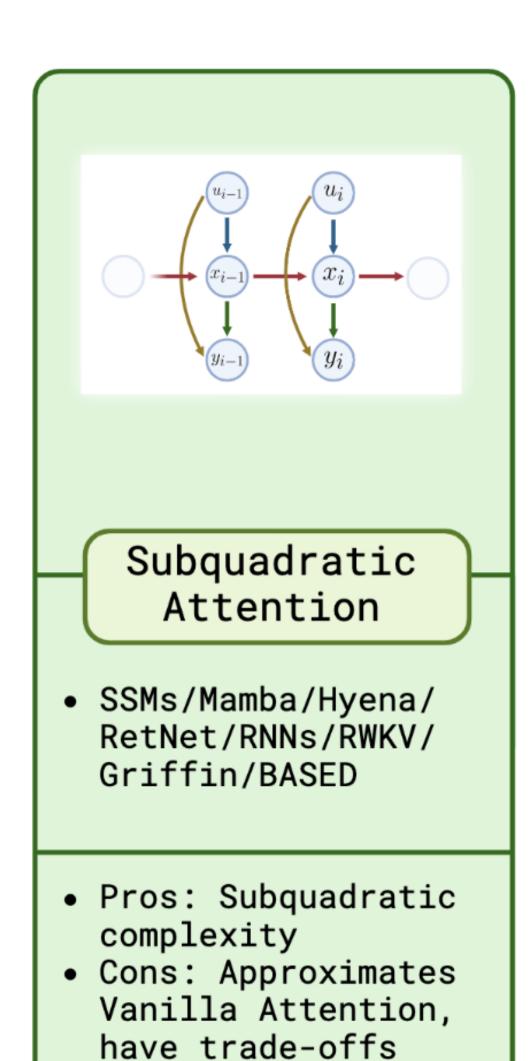
Architecture of LLMs for genomic sequence

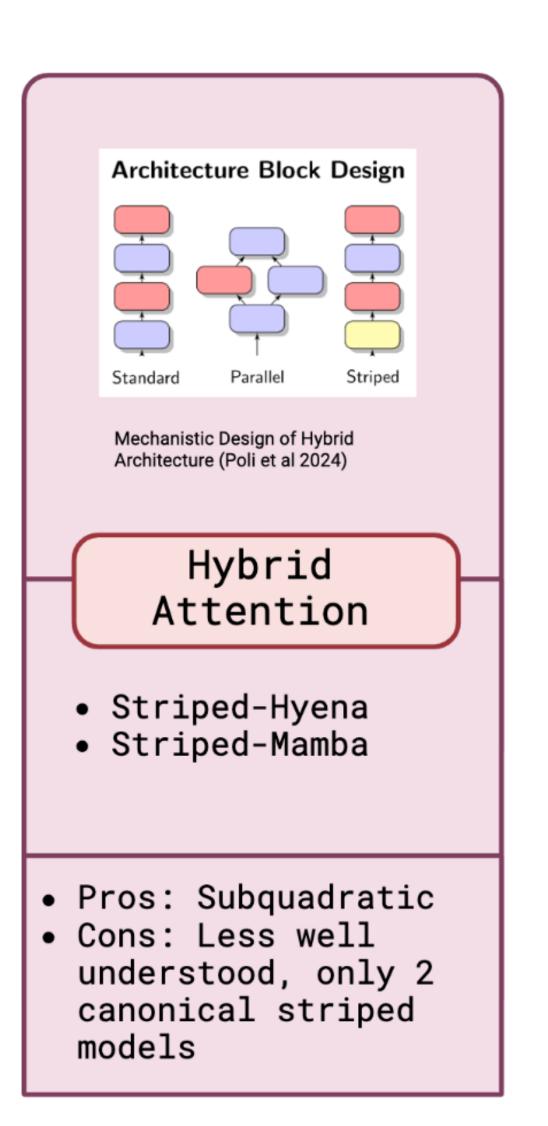
Choose Your Fighter (DNA Language Model):

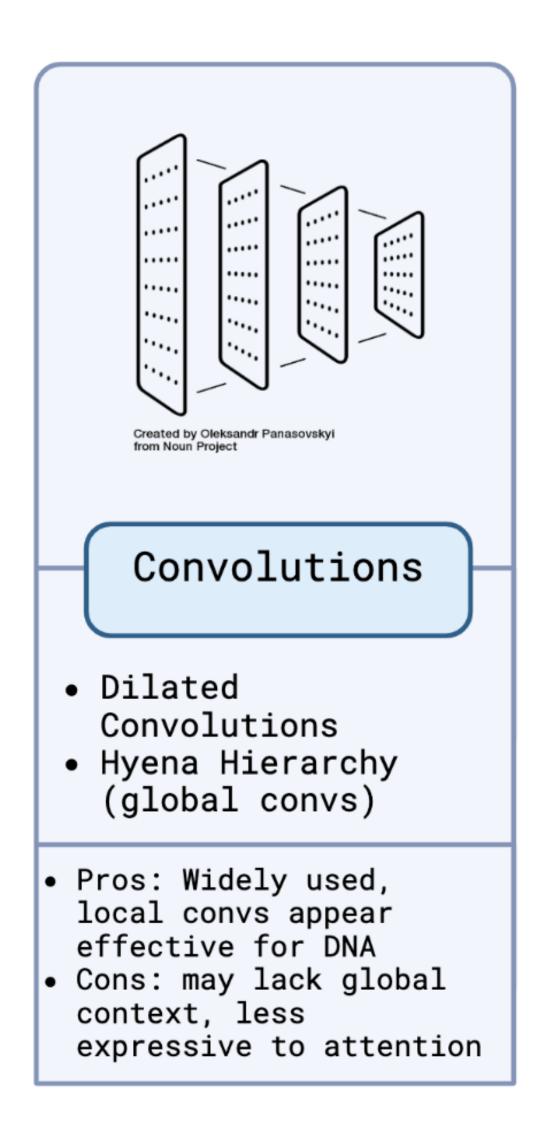


Vanilla Attention

- Gave Rise to immense success in vision and NLP
- Pros: Effective, relatively well studied
- Cons: Quadratic Complexity

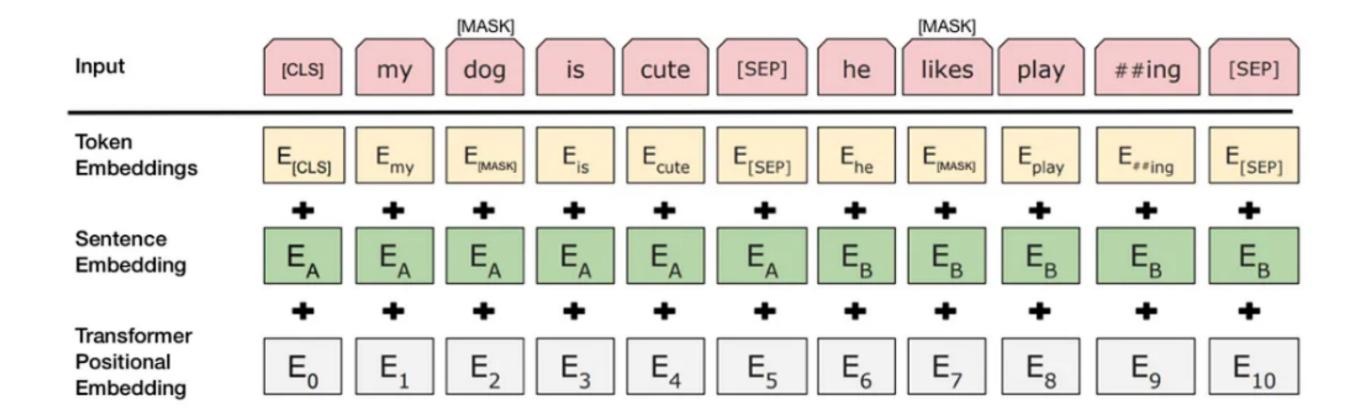




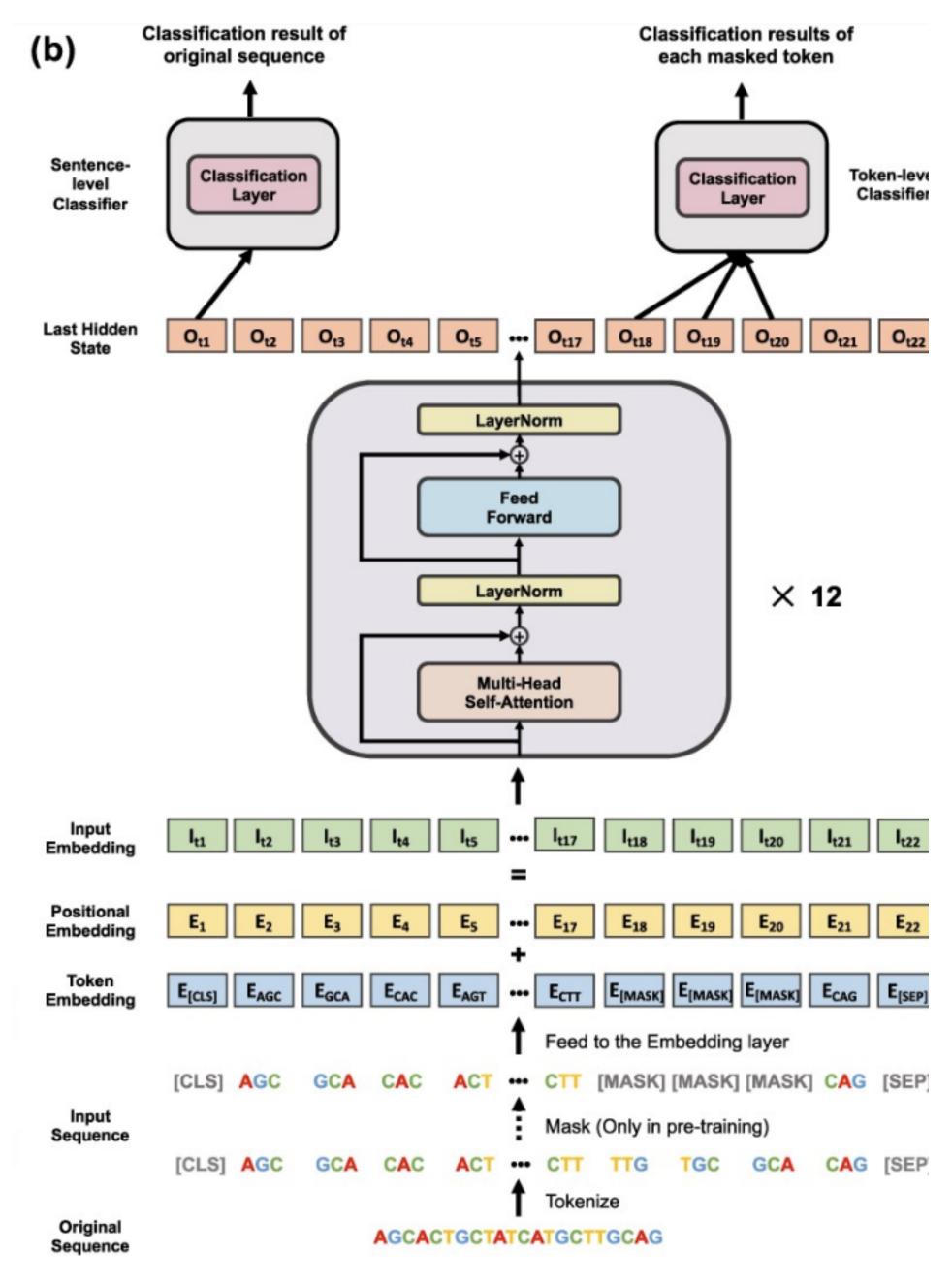


Modeling DNA sequences

- DNABERT
 - Pre-trained BERT for DNA sequences based on the human reference genome
 - Overlapping k-mer tokenization
- More recent methods:
 - NT, HyenaDNA, Caduceus, Evo,



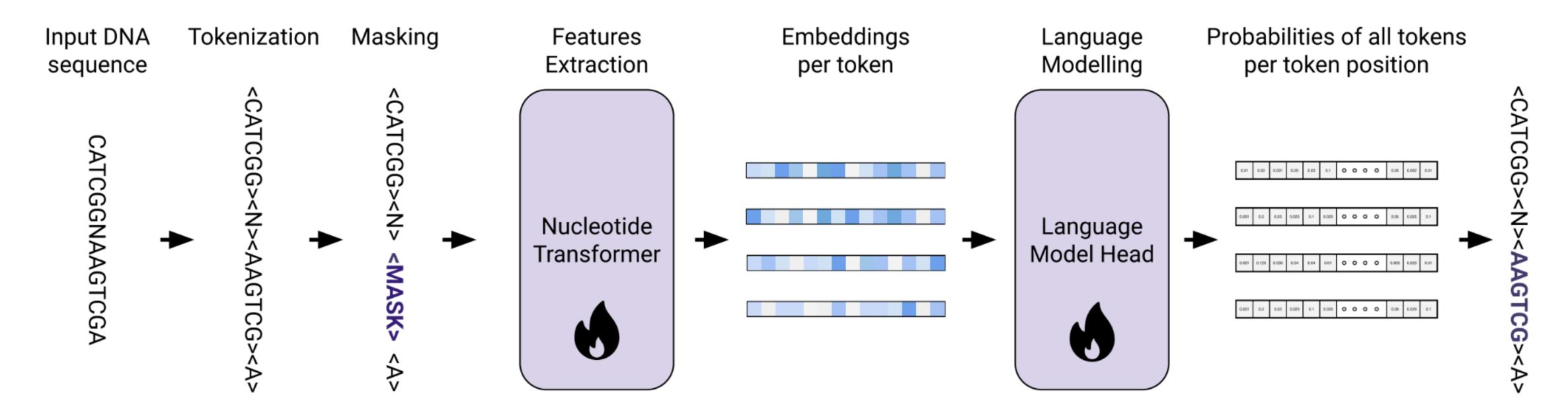
BERT input representation



Nucleotide Transformer

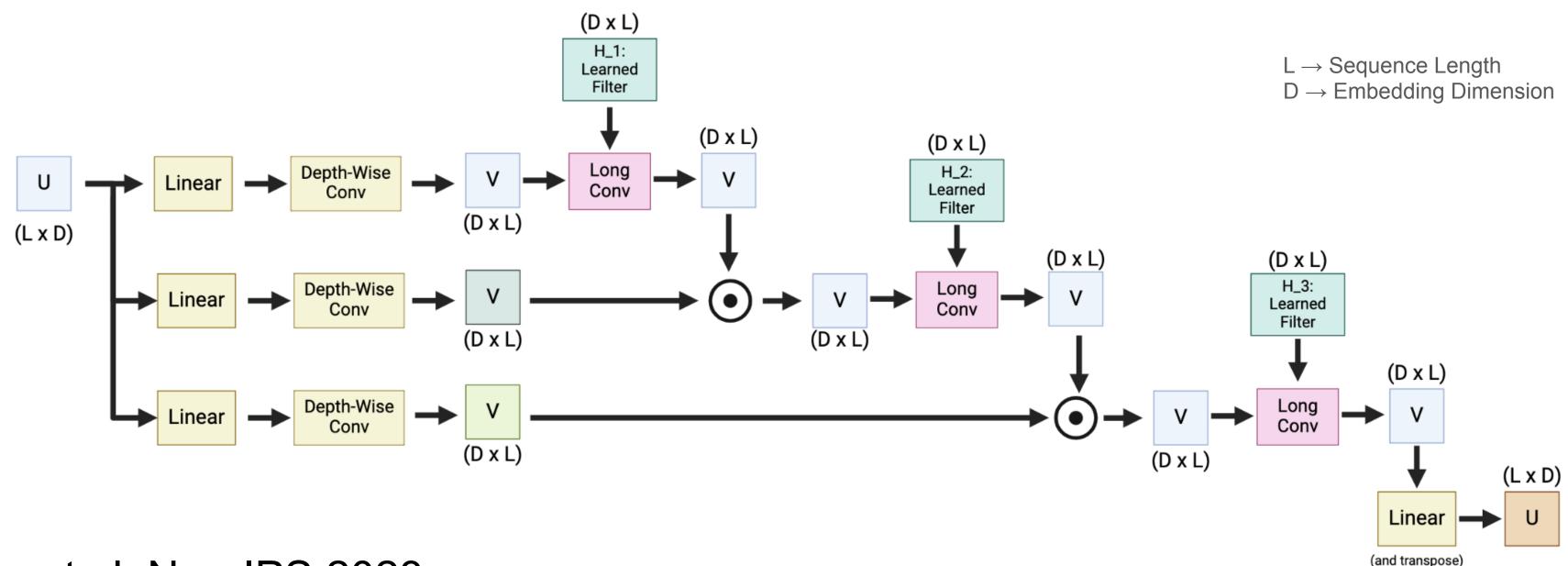
- Pre-trained BERT for DNA sequences on humans, 1000 genomes, and multispecies
- Non-overlapping K-mer tokenization
- Context length of 12K bp

- Downstream prediction tasks:
 - promoter region, TFBS, splice site, functional variants identification



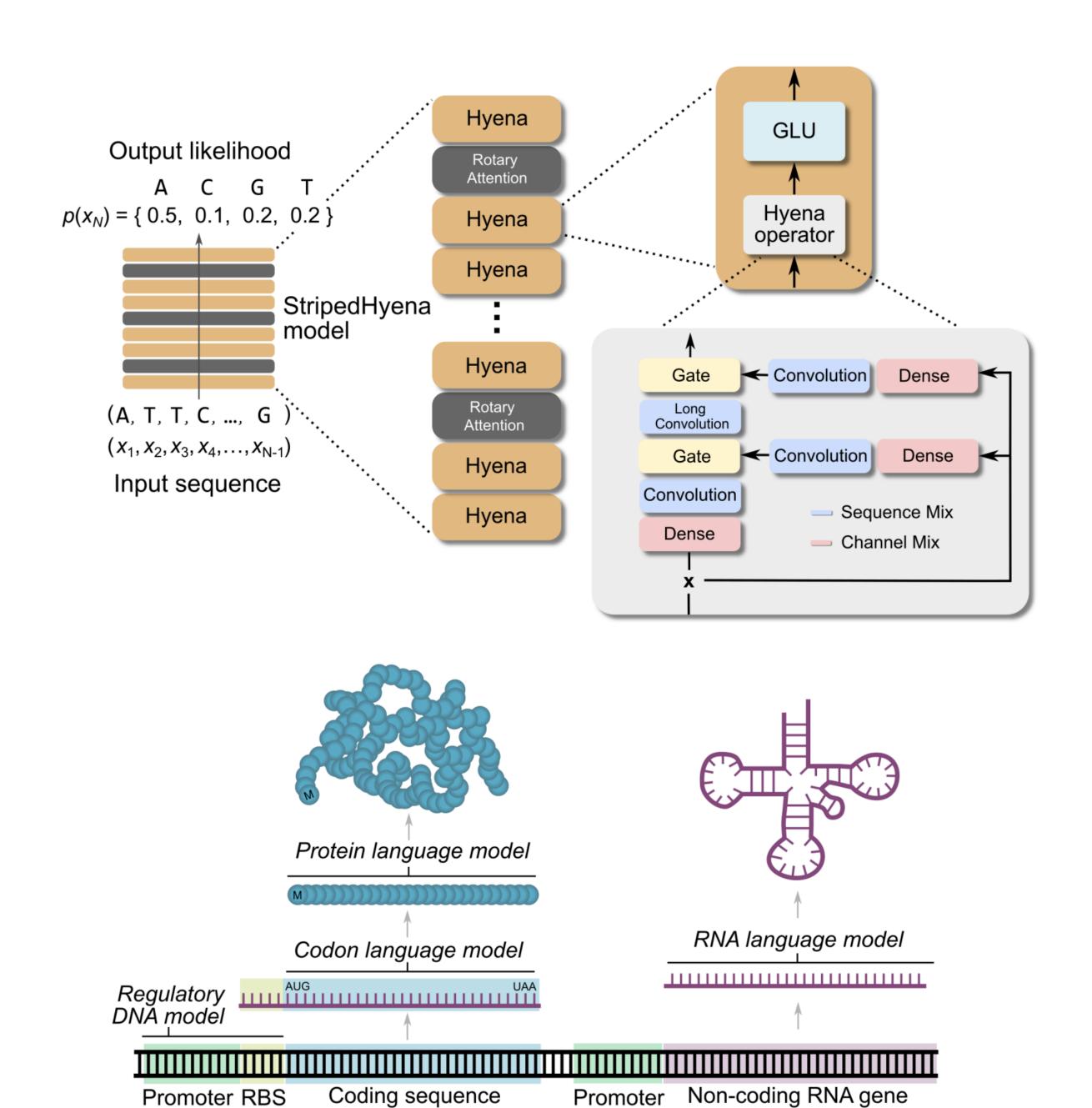
HyenaDNA

- Pre-trained next token prediction for DNA sequences using a convolutionbased architecture
- Tokenization: Nucleotide base-pair resolution
- Advantages: Long context modeling (~1M context length)
- Disadvantages: Not quite clear if this convolutional architecture has the capacity to match transformers



Evo

- Autoregressive (next-token prediction) pretrained on prokaryotic and phage genomes
- Striped Hyena architecture: combination of 29 hyena layers and 3 attention layers
- Demonstrates that aspects of protein and ncRNA can be evaluated through a model trained on DNA sequences



Importance of benchmark datasets

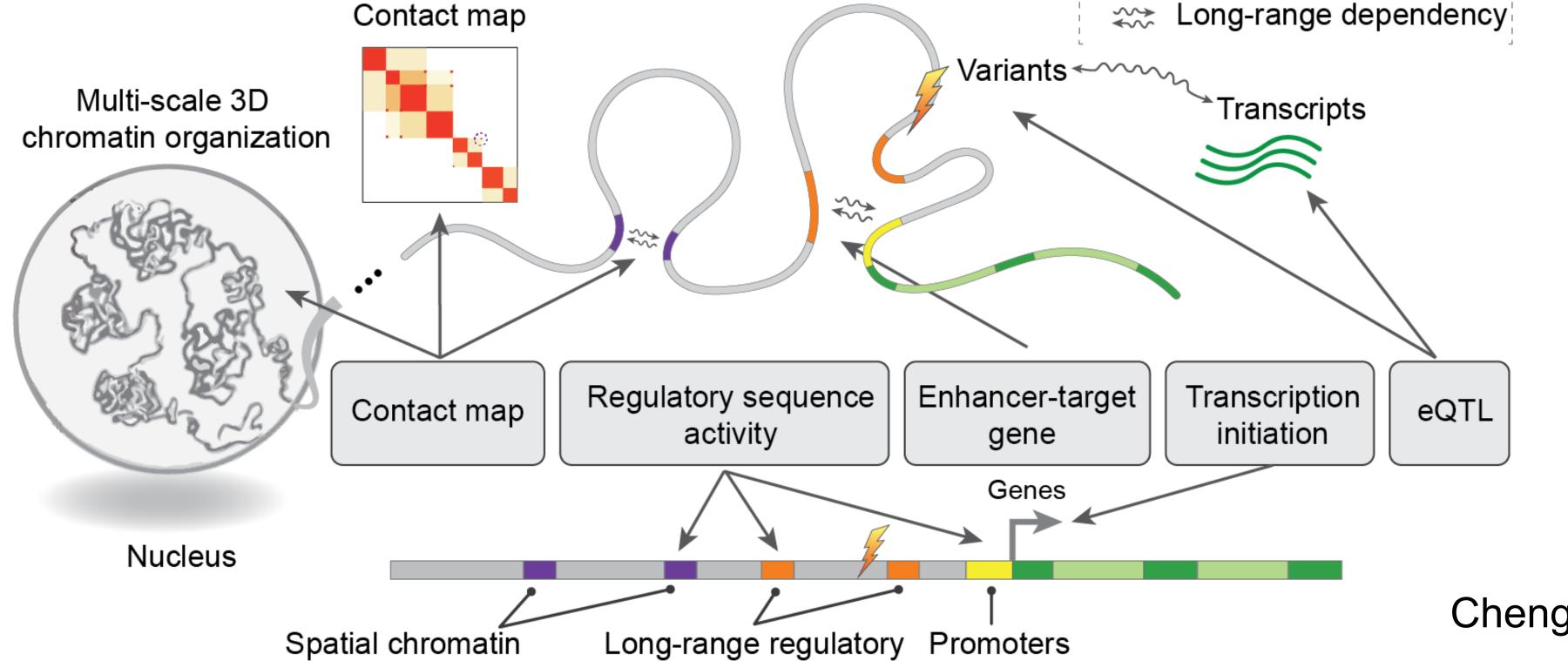
- Motivation: Most previous benchmarks for genomics focus on short-range (input lengths < 1000) classification tasks
- DNALongBench: A benchmark suite for long-range DNA prediction tasks

interactions

Wenduo Cheng

Zhenqiao Song

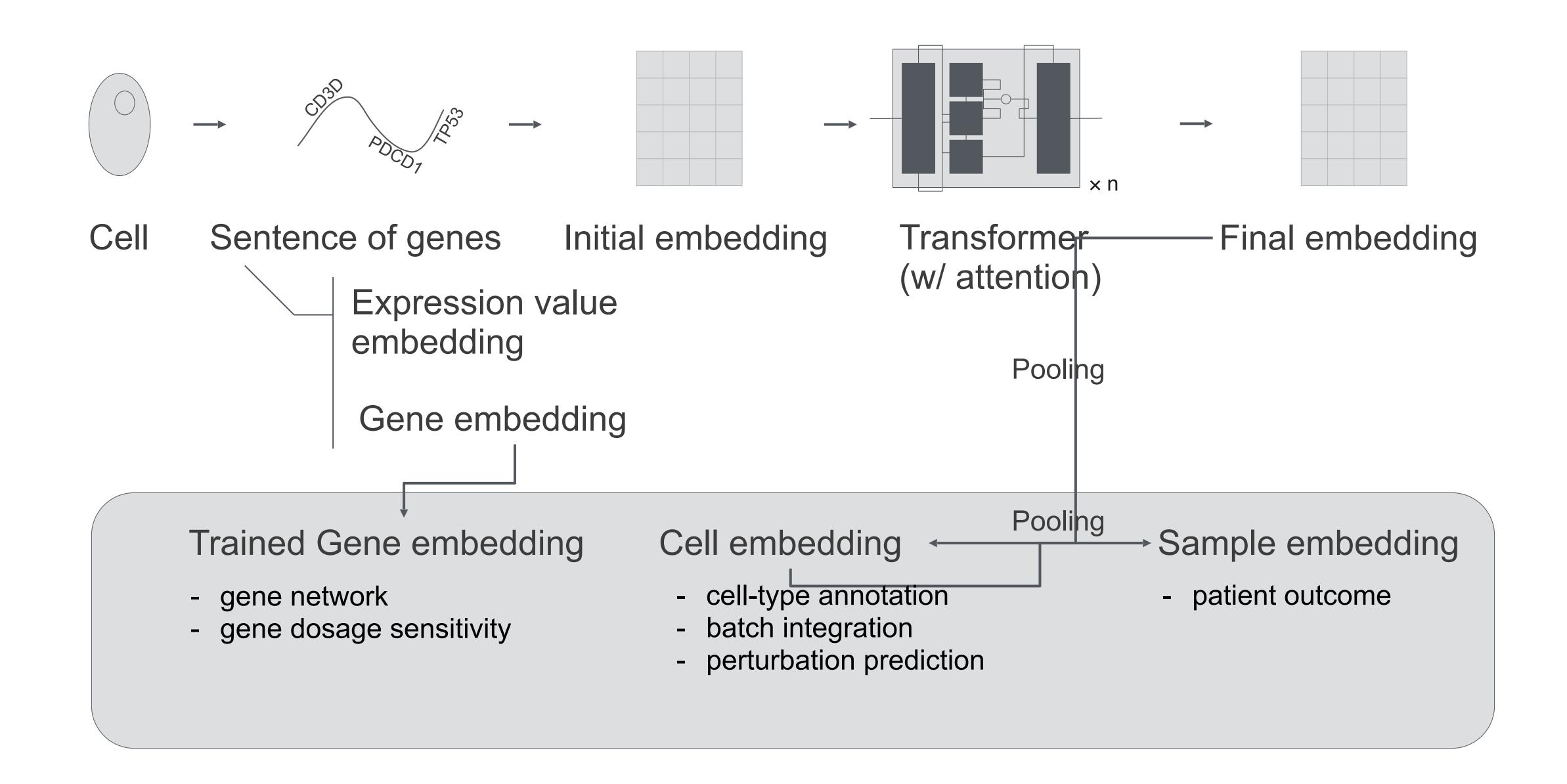
Lei Li



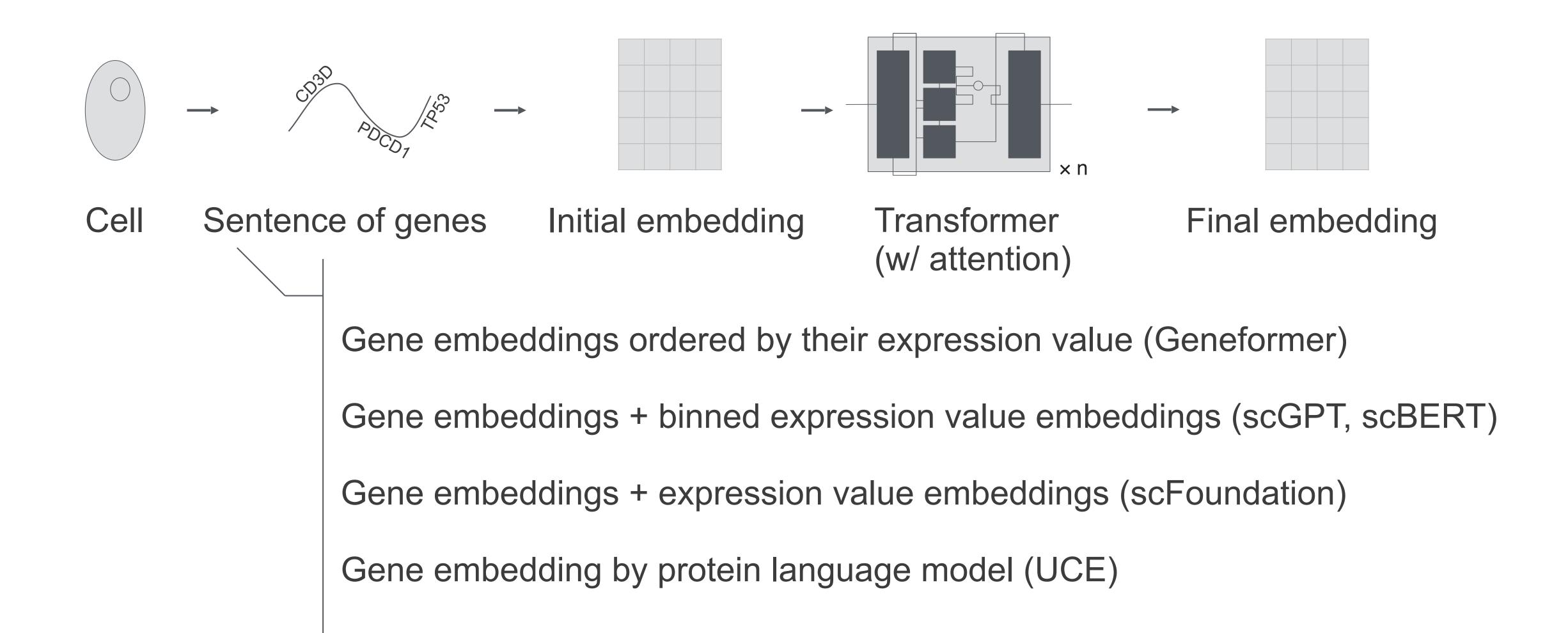
elements

Cheng et al. bioRxiv 2024

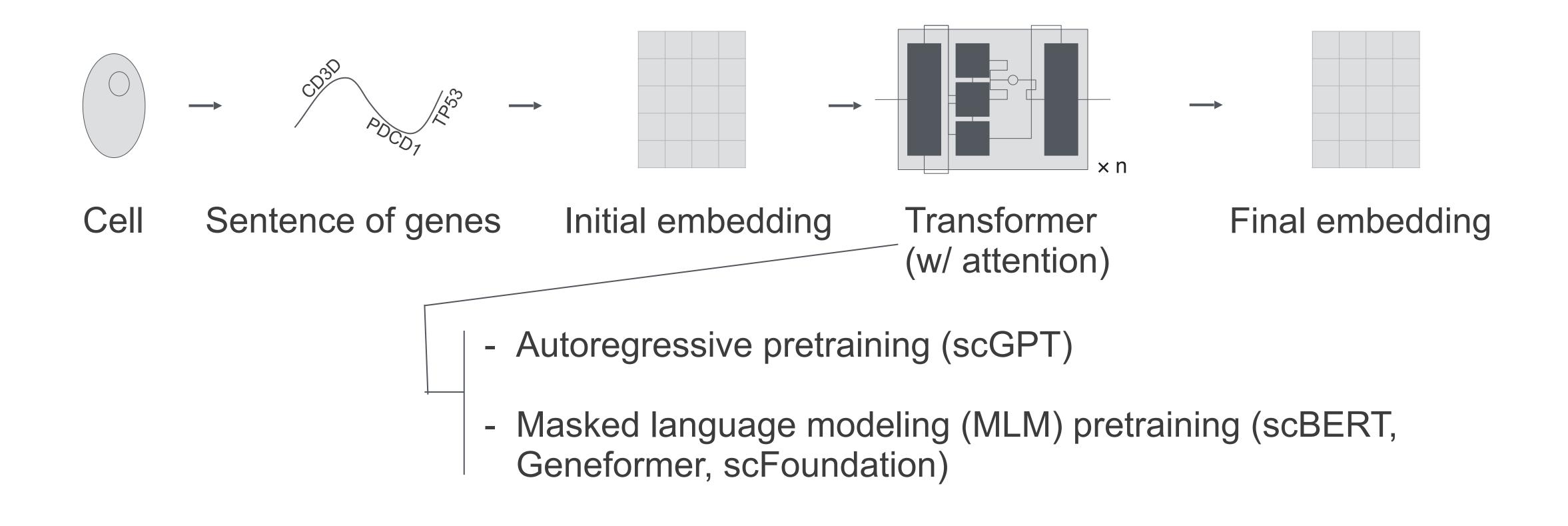
General structure of single-cell FMs



Tokenization for cells



Network structures and training strategies

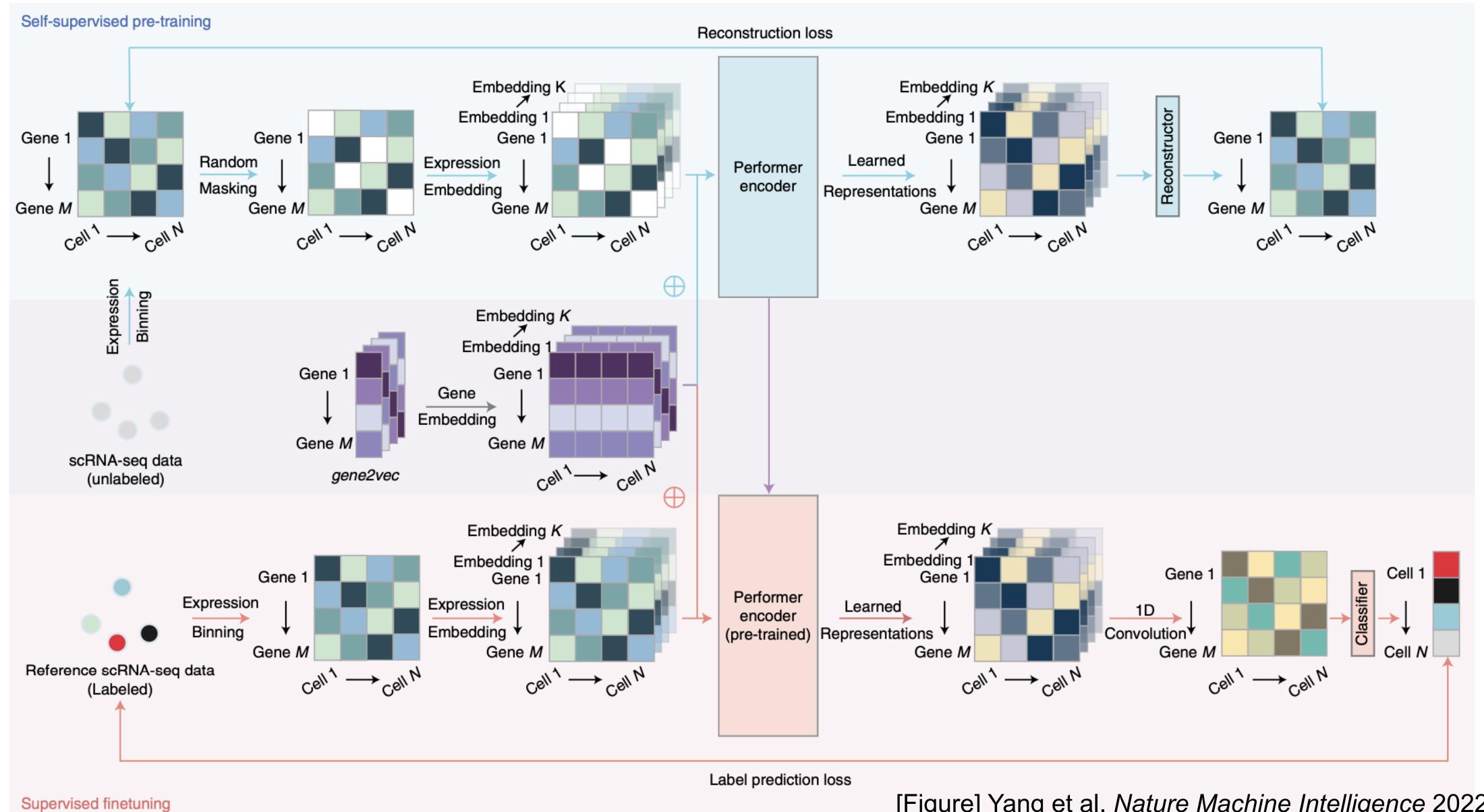


Timeline of scFMs

2	0	2	2

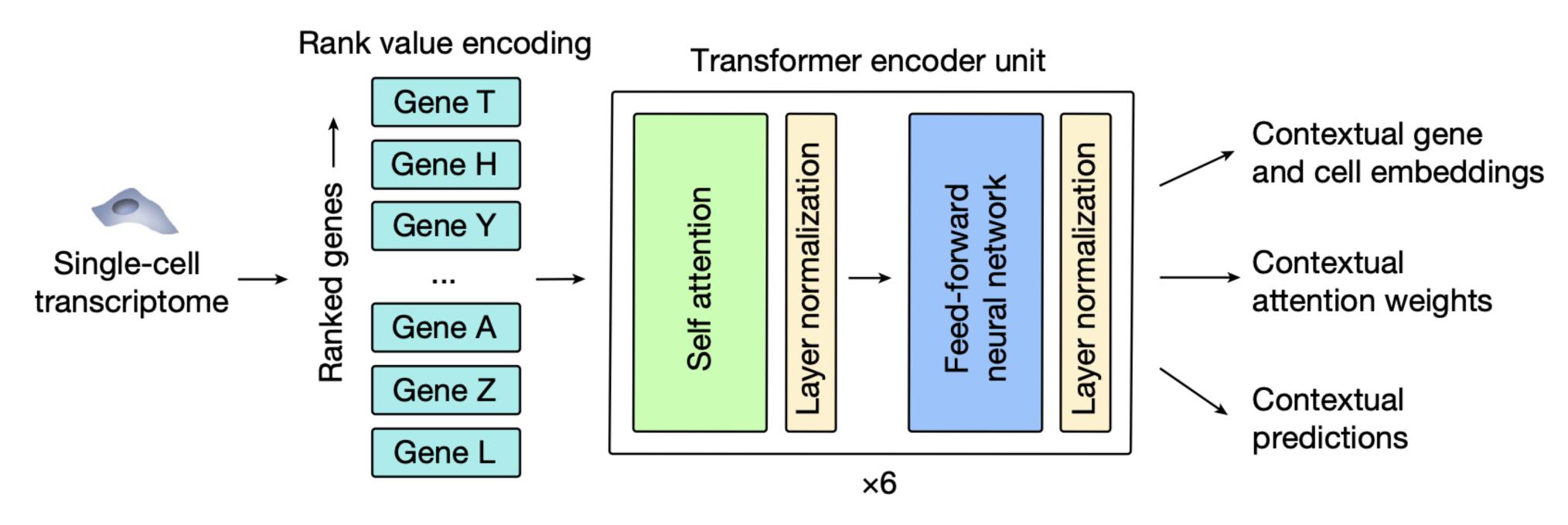
	# Parameters	Training data size	Highlights	Paper -
scBERT	5M	1M	> Scalability: Performer	Yang et al., Nat Mach Intell 2022
Geneformer	40M	30M	> Gene networks inference	Theodoris et al., Nature 2023
scGPT	51M	33M	> Generative pretraining (cell & gene prompt)	Cui et al., Nat Methods 2024
scFoundation	100M	50M	Scalability: reduced input lengthIntegration: confounding factors regressed out	Hao et al., Nat Methods 2024
UCE	650M +15B pLM (fixed)	46M	> Cross-species integration: utilizes pLM (ESM-2) for gene embedding	Rosen et al., bioRxiv 2023
scMulan	368M	10M	Multi-tasking: query by promptsRicher pretraining: metadata	Bian et al., RECOMB 2024
NicheFormer	50M	110M	> Integration: dissolved & spatial assays	Schaar et al., bioRxiv 2024

Full scBERT model training scheme



Geneformer

- Geneformer
 - Pretrained on 30 million scRNA-seq to enable context-specific predictions
 - Discretize gene expression through ranking genes according to their expression
 - Encodes network hierarchy in the attention weights of the model
 - In silico perturbation: remove a gene, compare cell and gene embeddings
- Other recent methods: scGPT, UCE ...



Theodoris et al. Nature 2023

Leveraging prior knowledge for improved gene embeddings

Gene embeddings can be trained de novo, but prior knowledge may help:

- Gene2vec
 - Distributed representation based on co-expression (used in scBERT)
- GenePT (Chen and Zou)
 - Use GPT-3.5 to generate gene embeddings from gene description.

However, because each gene is treated as a separate entity, knowledge about one gene is not transferable to another. Also, recognizing similarity of genes across species is important for a universal model.

- Universal Cell Embeddings (UCE)
 - Uses protein LLM to embed a sample's genes with protein products
 - Protein products make genes across species more comparable

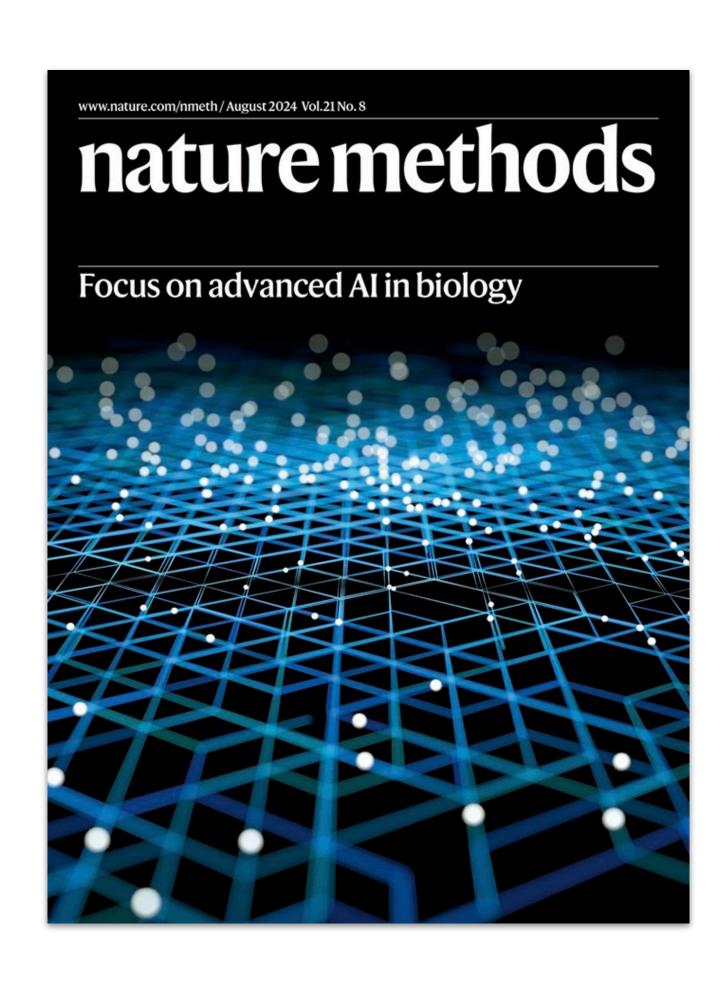
Promises and challenges

- Foundation models for genomes and cells seem to have potentials
 - Pretraining on large number of cells will discover intrinsic interaction of genes
 - Pretrained models are easily adaptable to multiple tasks to enable biological findings
- But biology is complicated and its "language" is likely much harder to model than natural languages.
 - Biological data involve many confounding factors
 - Biological questions are often not mathematically well-defined
 - In this data driven era: "what is the best question to ask"

Questions

- How to better evaluate LLMs?
- How to make LLMs more accessible?
- How to embed cell/gene to better maintain biological contexts?
- How to incorporate prior knowledge into the neural network?
- Do we have enough data available to pretrain LLMs or Foundation Models for various modalities in genomics? (Are we ever going to?)
- DNA and single-cell LLMs have comparable performance compared to existing approaches
 need more challenging problems.
- What are the important problems for LLMs?

Interpretable AI/ML in the era of LLMs



nature methods

Perspective

https://doi.org/10.1038/s41592-024-02359-7

Applying interpretable machine learning in computational biology—pitfalls, recommendations and opportunities for new developments

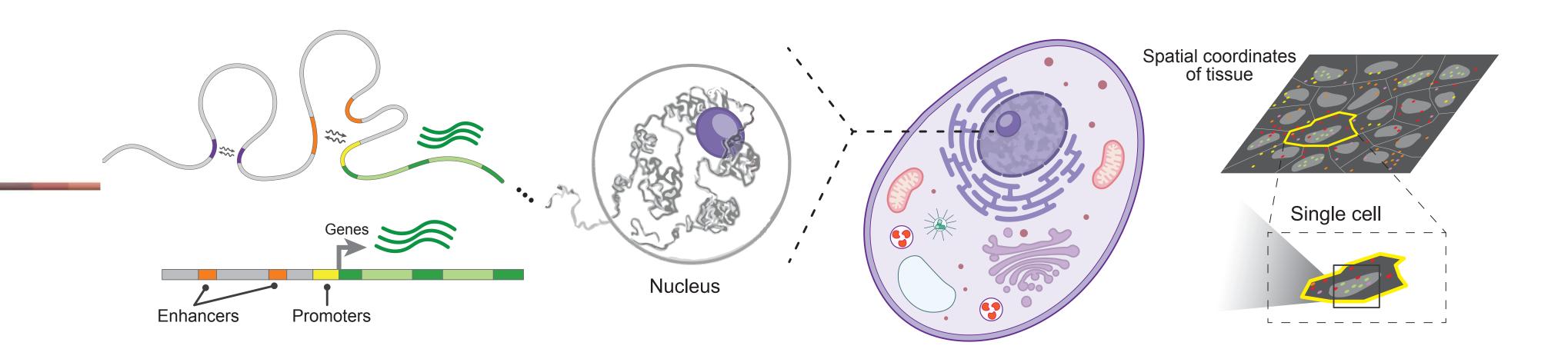
Received: 27 October 2022

Valerie Chen © 1,3, Muyu Yang © 2,3, Wenbo Cui © 1, Joon Sik Kim © 1,

Accepted: 24 June 2024

Ameet Talwalkar © 1 & Jian Ma © 2

Decoding the "language" of genomes, cells, and tissues

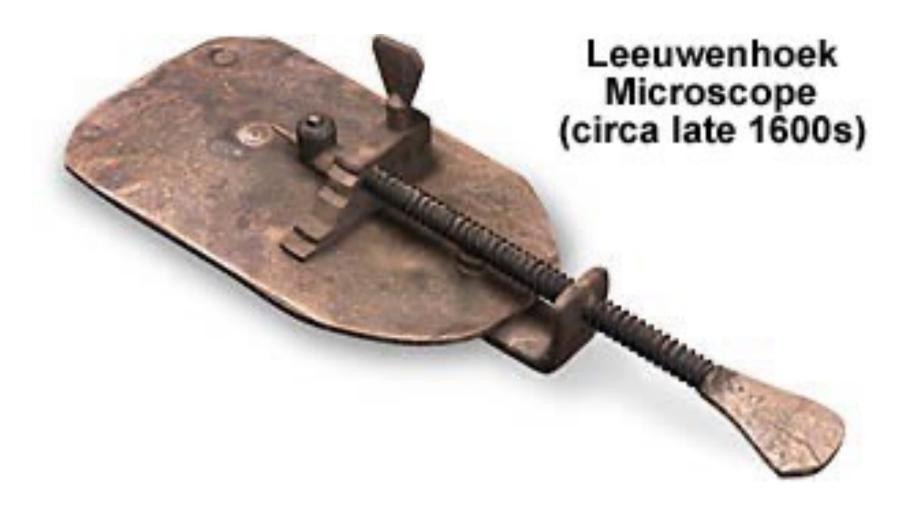


sequence — structure — function

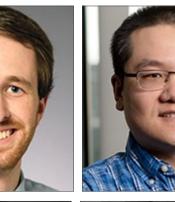
Biology is multiscale. So must our models be.

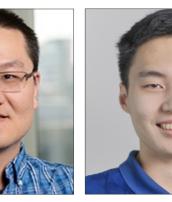
Living cell was first observed ~350 years ago by

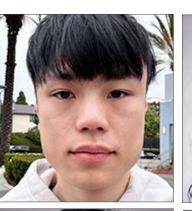
Antonie van Leeuwenhoek

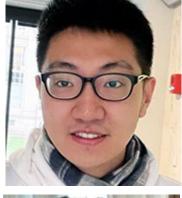


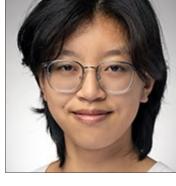
Acknowledgments

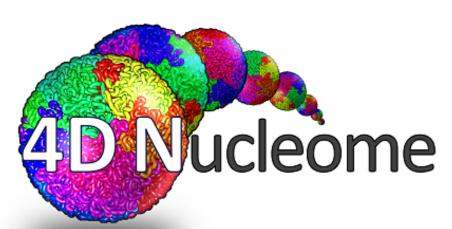


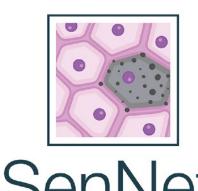












Ma lab (CMU)

Shahul Alam Ellie Haber Wendy Yang Shuming Liu Spencer Krieger Remy Liu Tianming Zhou Ben Chidester Kyle Xiong

Yang Zhang Junjie Tang Xinyue Lu Wenduo Cheng Nick Ho Ajinkya Deshpande Shike Wang Xue Er Ding Ruochi Zhang

National Human Genome Research Institute

Andy Belmont (UIUC) Ting Wu (Harvard) Frank Alber (UCLA) Susanne Rafelski (AICS) Nicola Neretti (Brown) Dave Gilbert (SDBRI) Jason Swedlow (Dundee) Tom Misteli (NCI)

4DN UM1 Center

Nicola Neretti (Brown) Steven Wang (Yale)

SenNet Project

Other Collaborators Zhijun Duan (UW) Xiaowei Zhuang (Harvard) Mitch Guttman (Caltech) Hansruedi Mathys (Pitt) Bing Ren (UCSD) Jenn Cremins (Penn) Fei Chen (Broad / Harvard) Jesse Dixon (Salk) Ting Wang (WashU) Lei Li (CMU) Ameet Talwalkar (CMU)