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« In 2020, Covid-19 pandemic rapidly spread over the world.
* More than 620 million confirmed cases including over 6.5 million deaths.
» Need for acceleration in pharmaceutical research.




Drug Discovery and Development
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« Drug discovery and development is a long and risky process.
« The successful launch of a new drug cost $1.3 billion on average and more than 10 years.
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In silico Drug Discovery

Using computers to predict drug activities. ii Mrmm ibraies

Faster and cheaper. ‘-?
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But drug candidates are either existing
molecules or manually designed ones.

Larger virtual library?



Discovering Treatment for COVID-19
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Al Powered Drug Discovery

* Al can generate drug-like molecules with desired properties.

 Using deep generative model (GENTRL) to design novel and
biological active drug candidates in 46 days.
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Generative Models for Molecules
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Perspective 1: Molecule Sequence Generation
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Generation from Latent Space

p(x) = | p(2)p(x|z)dz Q _____ Q
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Automatic chemical design using a data-driven continuous representation of molecules. Gomez-Bombarelli
et al. ACS Central Science 2016.



Reinforcement-Learning based Generation
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Graph convolutional policy network for goal-directed molecular graph generation. You et al, NeurIPS 2018 19



RationaleRL
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Multi-objective Molecule Generation using Interpretable Substructures. Jin et al, ICML 2020.
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Challenges

» Current generative model can only find molecules with high
similarities comparing to existing drugs/potential drug
candidates.
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Practical Drug Discovery

« Broader exploration of chemical space.
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Hoffmann et al. Drug Discovery Today 24(5), 1148-1156(2019) 13



Multi-Objective Optimization for Drug Discovery

« Successful drugs need to meet
multiple requirements, e.g.
bioactivity, safety and etc.

 In drug discovery, these properties
should also be optimized.

Nicolaou et al. Drug Discovery Today: Technologies 10(3), e427-e435(2019)
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Goal: Finding Diverse Molecules Satisfying Multiple Objectives

Does not rely on

Satisty multiple Produce diverse
properties with and novel lab measured
high scores molecules data
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MARS: Markov Molecule Sampling

« MCMC sampling from
(x) = $1(%) © S2(x) © $3(x) © -+ © 5g (%)

desired properties

e 5. (x) is scoring function HN-N

H
o QED: drug-likeness O N
o SA: possibility to synthesize ON
e 11(X) is the unnormalized distribution over molecule space.

. : 16
Xie et al. MARS: Markov Molecular Sampling for Multi-objective Drug Discovery. ICLR 2021.
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Mining Molecular Fragments

ChEMBL: 2.3M compounds
Breaking single bond and Mining 1000 most
frequent fragments with no more than 10 heavy
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MARS: Iterative Graph Editing
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 Start from initial molecule (e.g. C2H6)

* For each step, propose a new molecule x by
modifying existing one, X' ~q(x’ |x - )
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Adaptive Proposal Learning in MARS

- MCMC sampling %\ﬁ}@w
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* Markov-chain with annealing scheme to find optimal
samples

« Adaptive MCMC proposal: MPNN learned on sampled
molecular graphs

Xie et al. MARS: Markov Molecular Sampling for Multi-objective Drug Discovery. ICLR 2021.
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Molecular Graph Editing

« Adding fragment H
JOARC R ON F%\(“@\F

* Deleting fragment

Xie et al. MARS: Markov Molecular Sampling for Multi-objective Drug Discovery. ICLR 2021.
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Learning Proposal Network (MPNN)

* Modeling editing actions as node,

edge, and graph prediction problems | /@Q%

h{98° = Concat(h2°d®, hiode) ¢ R24
h&aPh — MaxPooling({h2°¢}) € R?

Padd = SOftmaX({MLPIlOde (hTI},Ode ) ) })7 PrOb- addlng
Pfrag = Softmax(MLPgraph (hgl’aph) )

Pdel = Softmax({MLPed ge (hzdge ) ) }) »Prob. deleting

Neural message passing for quantum chemistry, Gilmereral., ICML 2017
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MARS with Docking Score
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Xie et al. MARS: Markov Molecular Sampling for Multi-objective Drug Discovery. ICLR 2021.



Integrating 3D Structures

Vina: -12.49 QED: 0.58 SAscore: 0.63 Vina: -12.41 QED: 0.80 SAscore: 0.68

Xie et al. MARS: Markov Molecular Sampling for Multi-objective Drug Discovery. ICLR 2021.
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Adaptive Proposal Training

Algorithm 1: MARS.
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Initialize molecules {mgo) }2¥, and the molecular editing model Mp;
Create an empty editing model training dataset D = {};
fort=1,2,... do

for:=1,2,...,N do
Calc probability distributions (padd, Pfrag, Pdel) = Mg(a:(-t_l));

1

Sample a candidate molecule z’ from the proposal distribution

q(z’ | mz(-t_l)) defined with probability distributions padd, Prag, Pdel;
if u< AV 2') where u ~ Ujo,1) then

| Accept the candidate molecule mgt) =x;

else
(1) _ m(t—l);

1

| Refuse the candidate molecule x
end
if The candidate improves, i.e. w(z') > W(mgt_l)) then

| Adding the editing record (mgt_l), z') into the dataset D;
end

end
Update model My with the current dataset D in a MLE manner;

end

24



MARS Generates Better Molecules!
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« (Generation objectives
o GSK3, JNK3: biological inhibition
o QED: drug-likeness score
o SA: synthetic accessibility score

 Evaluate w/ Product_score = success_rate * novelty * diversity

Xie et al. MARS: Markov Molecular Sampling for Multi-objective Drug Discovery. ICLR 2021.

25



MARS explores large chemical space!
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Xie et al. MARS: Markov Molecular Sampling for Multi-objective Drug Discovery. ICLR 2021.



Novel Compounds Found
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Xie et al. MARS: Markov Molecular Sampling for Multi-objective Drug Discovery. ICLR 2021.
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Key Takeaways

Challenges in Drug discovery: multi-objective, novel and diverse,
lack of data

« modeled as a molecule generation problem
MARS, a simple yet flexible framework for multi-objective
« Based on MCMC sampling
 Self-adaptive proposal trained on the fly => no need for data
« (Generates better molecules and explores lager chemical space

=> can discover novel and diverse drug-like molecules
Challenges remaining:

e more properties

« larger molecule, peptide, protein

30



Reference

Yutong Xie, Chence Shi, Hao Zhou, Yuwel Yang, Weinan
/hang, Yong Yu, Lei Li. MARS: Markov Molecular Sampling
for Multi-objective Drug Discovery. ICLR 2021.



	Slide 1: Multi-objective Drug Molecule Generation via MARS
	Slide 2
	Slide 3: Drug Discovery and Development
	Slide 4: In silico Drug Discovery
	Slide 5: Discovering Treatment for COVID-19
	Slide 6: AI Powered Drug Discovery
	Slide 7: Generative Models for Molecules
	Slide 8: Perspective 1: Molecule Sequence Generation
	Slide 9: Generation from Latent Space
	Slide 10: Reinforcement-Learning based Generation
	Slide 11: RationaleRL
	Slide 12: Challenges
	Slide 13: Practical Drug Discovery
	Slide 14: Multi-Objective Optimization for Drug Discovery
	Slide 15: Goal: Finding Diverse Molecules Satisfying Multiple Objectives
	Slide 16: MARS: Markov Molecule Sampling
	Slide 17: Mining Molecular Fragments
	Slide 18: MARS: Iterative Graph Editing
	Slide 19: Adaptive Proposal Learning in MARS
	Slide 20: Molecular Graph Editing
	Slide 21: Learning Proposal Network (MPNN)
	Slide 22: MARS with Docking Score
	Slide 23: Integrating 3D Structures
	Slide 24: Adaptive Proposal Training
	Slide 25: MARS Generates Better Molecules!
	Slide 27: MARS explores large chemical space!
	Slide 28: Novel Compounds Found
	Slide 30: Key Takeaways
	Slide 31: Reference

